thioacetamide has been researched along with Weight-Gain* in 2 studies
2 other study(ies) available for thioacetamide and Weight-Gain
Article | Year |
---|---|
Effect of lycopene supplementation on lipid profile, blood glucose and electrolyte homeostasis in thioacetamide induced liver cirrhosis.
Lycopene is a fat-soluble carotenoid pigment that gives tomatoes their red color and capacity for scavenging free radicals. The current study was designed to evaluate the effect of lycopenesupplementation on blood glucose, lipid profile and electrolyte homeostasis in thioacetamide induced liver cirrhosis. Experimental period was consisted of 12 weeks, divided into two phases (each of six weeks). For this purpose 24 male albino wistar rats were randomly distributed into four groups (n=6). Group I served as control, Group II received thioacetamide (200mg/kg b.w, i.p, twice a week) in the first phase and then saline in the second phase. Group III received thioacetamidein the first phase and lycopene in the second phase. Group IV received saline in the first phase and lycopene in the second phase. Thioacetamide toxicity was evidenced by decrease in body weight, plasma glucose and HDL level, plasma and intra-erythrocyte sodium and potassium and increase in liver weight, plasma total cholesterol, triglyceride and LDL level. While lycopene administration resulted in increased body weight, HDL level, plasma and intra-erythrocyte sodium and potassium and decreased liver weight, plasma cholesterol, triglyceride, LDL and plasma glucose level. Thus, confirms the protective role of lycopene in thioacetamide induced liver cirrhosis. Topics: Animals; Blood Glucose; Cholesterol; Dietary Supplements; Electrolytes; Homeostasis; Liver Cirrhosis; Lycopene; Male; Potassium; Rats; Rats, Wistar; Saline Solution; Thioacetamide; Triglycerides; Weight Gain | 2023 |
Diet restriction enhances compensatory liver tissue repair and survival following administration of lethal dose of thioacetamide.
Diet restriction is known to prevent a plethora of age-associated diseases including cancer. However, the effects of diet restriction on noncancer end points are not known. The objective of this study was to investigate whether diet restriction protects against hepatotoxicity of thioacetamide (TA), and if so, to investigate the underlying mechanism. Male Sprague-Dawley rats (250-275 g) were maintained on 65% of their ad libitum (AL) food consumption for a period of 3 weeks and then treated with a single low dose of 50 mg TA/kg i.p.. Plasma enzymes (ALT and SDH), hepatic glycogen levels, and 3H-thymidine incorporation into hepatocellular nuclear DNA were measured during a time course (0-120 h) after TA administration. Liver sections were examined for histopathology, and cell-cycle progression was assessed by proliferating cell nuclear antigen (PCNA) immunohistochemistry. In AL rats hepatic necrosis was evident at 12 h, peaked at 36 h, persisted up to 72 h, and was resolved by 96 h. In the diet-restricted (DR) group hepatic necrosis was observed at 12 h, peaked at 24 h, persisted till 72 h, and was resolved by 96 h. Maximal injury indicated by enzyme elevation occurred in DR rats and was approximately sixfold greater than that observed in the AL group. Histopathological examination of the liver sections revealed liver injury concordant with plasma enzyme elevations. There was a higher and sustained S-phase synthesis in the DR rats compared to AL group. S-phase stimulation was evident at 36 h, peaked at 48 h, and persisted until 96 h in the DR rats, whereas in the AL rats peak S-phase stimulation occurred at 36 h and subsided by 72 h. PCNA studies revealed a corresponding stimulation of cell-cycle progression indicating highly stimulated compensatory tissue repair. The 14-day lethality experiments (600 mg TA/kg i.p.) indicated 70% survival in the DR rats compared to 10% survival in the AL group. Although diet restriction increases hepatotoxic injury of TA, it protects from the lethal outcome by enhanced liver tissue repair. Comparison of liver injury and tissue repair employing an equitoxic dose (600 mg TA/kg in AL rats yields similar liver injury as observed with 50 mg TA/kg in DR rats) revealed that in spite of near equal injury up to 36 h, tissue repair response in DR rats is much higher. The compensatory tissue repair allows the DR rats to escape death in contrast to much lower compensation in AL rats leading to progression of liver injury culminating in Topics: Animals; Carcinogens; Chemical and Drug Induced Liver Injury, Chronic; DNA; Drinking; Enzymes; Liver; Liver Glycogen; Male; Organ Size; Proliferating Cell Nuclear Antigen; Rats; Rats, Sprague-Dawley; Survival Analysis; Thioacetamide; Thymidine; Weight Gain | 1998 |