thioacetamide and Hepatitis--Chronic

thioacetamide has been researched along with Hepatitis--Chronic* in 2 studies

Other Studies

2 other study(ies) available for thioacetamide and Hepatitis--Chronic

ArticleYear
Curcumin, Silybin Phytosome(®) and α-R-Lipoic Acid Mitigate Chronic Hepatitis in Rat by Inhibiting Oxidative Stress and Inflammatory Cytokines Production.
    Basic & clinical pharmacology & toxicology, 2016, Volume: 118, Issue:5

    Chronic hepatitis is recognized as a worldwide health problem that gradually progresses towards cirrhosis and hepatocellular carcinoma. Despite the large number of experiments using animal models for allergic hepatitis, it is still difficult to produce a picture of chronic hepatitis. Therefore, this study was conducted to introduce an animal model approximating to the mechanism of chronicity in human hepatitis. The study also aimed to examine the hepatoprotective effects of curcumin, silybin phytosome(®) and α-R-lipoic acid against thioacetamide (TAA)-induced chronic hepatitis in rat model. TAA was administered intraperitoneally at a dose of 200 mg/kg three times weekly for 4 weeks. At the end of this period, a group of rats was killed to assess the development of chronic hepatitis in comparison with their respective control group. TAA administration was then discontinued, and the remaining animals were subsequently allocated into four groups. Group 1 was left untreated, whereas groups 2-4 were allowed to receive daily oral doses of curcumin, silybin phytosome(®) or α-R-lipoic acid, respectively, for 7 weeks. Increases in hepatic levels of malondialdehyde associated with TAA administration were inhibited in groups receiving supplements. Furthermore, glutathione depletion, collagen deposition, macrophage activation and nuclear factor κappa-B expression as well as tumour necrosis factor-α and interleukin-6 levels were significantly decreased in response to supplements administration. Serological analysis of liver function and liver histopathological examination reinforced the results. The above evidence collectively indicates that the antioxidant and anti-inflammatory activities of curcumin, silybin phytosome(®) and α-R-lipoic acid may confer therapeutic efficacy against chronic hepatitis.

    Topics: Administration, Oral; Animals; Anti-Inflammatory Agents; Antioxidants; Curcumin; Cytokines; Disease Models, Animal; Hepatitis, Chronic; Male; Oxidative Stress; Rats; Rats, Wistar; Silybin; Silymarin; Thioacetamide; Thioctic Acid

2016
Hepatic inflammation facilitates transcription-associated mutagenesis via AID activity and enhances liver tumorigenesis.
    Carcinogenesis, 2015, Volume: 36, Issue:8

    Chronic inflammation triggers the aberrant expression of a DNA mutator enzyme, activation-induced cytidine deaminase (AID), and contributes to tumorigenesis through the accumulation of genetic aberrations. To gain further insight into the inflammation-mediated genotoxic events required for carcinogenesis, we examined the role of chronic inflammation in the emergence of genetic aberrations in the liver with constitutive AID expression. Treatment with thioacetamide (TAA) at low-dose concentrations caused minimal hepatic inflammation in both wild-type (WT) and AID transgenic (Tg) mice. None of the WT mice with low-dose TAA administration or AID Tg mice without hepatic inflammation developed cancers in their liver tissues over the 6 month study period. In contrast, all the AID Tg mice with TAA treatment developed multiple macroscopic hepatocellular carcinomas during the same observation period. Whole exome sequencing and additional deep-sequencing analyses revealed the enhanced accumulation of somatic mutations in various genes, including dual specificity phosphatase 6 (Dusp6), early growth response 1 (Egr1) and inhibitor of DNA binding 2 (Id2), which are putative tumor suppressors, in AID-expressing liver with TAA-mediated hepatic inflammation. Microarray and quantitative reverse transcription-polymerase chain reaction analyses showed the transcriptional upregulation of various genes including Dusp6, Egr1 and Id2 under hepatic inflammatory conditions. Together, these findings suggest that inflammation-mediated transcriptional upregulation of target genes, including putative tumor suppressor genes, enhances the opportunity for inflamed cells to acquire somatic mutations and contributes to the acceleration of tumorigenesis in the inflamed liver tissues.

    Topics: Animals; Cell Transformation, Neoplastic; Cytidine Deaminase; Dose-Response Relationship, Drug; Dual Specificity Phosphatase 6; Early Growth Response Protein 1; Gene Expression Regulation; Hepatitis, Chronic; Inhibitor of Differentiation Protein 2; Liver Neoplasms; Mice, Inbred C57BL; Mice, Transgenic; Mutagenesis; Mutation; Thioacetamide

2015