thioacetamide and End-Stage-Liver-Disease

thioacetamide has been researched along with End-Stage-Liver-Disease* in 2 studies

Other Studies

2 other study(ies) available for thioacetamide and End-Stage-Liver-Disease

ArticleYear
Decreased brain noradrenaline in minimal hepatic encephalopathy is associated with cognitive impairment in rats.
    Brain research, 2022, 10-15, Volume: 1793

    Minimal hepatic encephalopathy (MHE) is a common neuropsychiatric complication in patients with cirrhosis. Alterations in monoamine neurotransmitters have been associated with the pathogenesis of MHE. We investigated the levels of hippocampal noradrenergic neurotransmitter in a rat model of thioacetamide-induced chronic liver failure-related MHE, and their role in cognitive impairment.. 18 male Sprague-Dawley (SD) rats were equally divided in MHE and control groups. A rat model of MHE was established by intraperitoneal injection of thioacetamide (TAA) for 12 weeks. Cognitive function was assessed using the Morris water maze (MWM) test and locomotor activity and exploratory behavior assessed with open field test. The concentration of hippocampal noradrenaline (NE) was detected by ELISA, and the magnetic susceptibility value in the hippocampus was detected by quantitative susceptibility mapping. Hippocampal iron content was quantified by Prussian blue staining.. MHE rats performed significantly poorer than their control counterparts in the MWM test, as seen by decreased number of platform crossings and time in the target quadrant, and increased path length to reach the target zone (P < 0.05 for all parameters). In the open field test, the MHE group exhibited lower locomotor activity and exploratory behavior than the control group (P < 0.05 for all parameters). We detected pronounced iron staining in the hippocampus of MHE rats, whereas no iron-stained particles were found in control rats. We observed an imbalance of inflammatory (increased pro- and decreased anti-) cytokines in the hippocampus of MHE rats. Further analysis of the data showed that the level of hippocampal noradrenaline in MHE rats was significantly lower than that of control rats (P < 0.05). We observed a correlation between the level of inflammatory cytokine and noradrenaline land susceptibility value in the rat hippocampus of the MHE group.. Our results suggest that MHE associated with TAA-induced chronic liver failure is associated with alterations in noradrenergic neurotransmission. We propose that iron imbalance in the brain might lead to reduction in the levels of noradrenaline, and cognitive impairment.

    Topics: Animals; Brain; Cognitive Dysfunction; Cytokines; End Stage Liver Disease; Hepatic Encephalopathy; Liver Cirrhosis; Male; Norepinephrine; Rats; Rats, Sprague-Dawley; Thioacetamide

2022
Candesartan, rather than losartan, improves motor dysfunction in thioacetamide-induced chronic liver failure in rats.
    Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 2017, Sep-21, Volume: 50, Issue:11

    Minimal hepatic encephalopathy is more common than the acute syndrome. Losartan, the first angiotensin-II receptor blocker (ARB), and candesartan, another widely-used ARB, have protected against developing fibrogenesis, but there is no clear data about their curative antifibrotic effects. The current study was designed to examine their effects in an already-established model of hepatic fibrosis and also their effects on the associated motor dysfunction. Low-grade chronic liver failure (CLF) was induced in 3-month old Sprague-Dawley male rats using thioacetamide (TAA, 50 mg·kg-1·day-1) intraperitoneally for 2 weeks. The TAA-CLF rats were randomly divided into five groups (n=8) treated orally for 14 days (mg·kg-1·day-1) as follows: TAA (distilled water), losartan (5 and 10 mg/kg), and candesartan (0.1 and 0.3 mg/kg). Rats were tested for rotarod and open-field tests. Serum and hepatic biochemical markers, and hepatic histopathological changes were evaluated by H&E and Masson's staining. The TAA-CLF rats showed significant increases of hepatic malondialdehyde, hepatic expression of tumor necrosis factor-α (TNF-α), and serum ammonia, alanine aminotransferase, γ-glutamyl transferase, TNF-α, and malondialdehyde levels as well as significant decreases of hepatic and serum glutathione levels. All treatments significantly reversed these changes. The histopathological changes were moderate in losartan-5 and candesartan-0.1 groups and mild in losartan-10 and candesartan-0.3 groups. Only candesartan significantly improved TAA-induced motor dysfunction. In conclusion, therapeutic antifibrotic effects of losartan and candesartan in thioacetamide-induced hepatic fibrosis in rats are possibly through angiotensin-II receptor blocking, antioxidant, and anti-inflammatory activities. Improved motor dysfunction by candesartan could be attributed to better brain penetration and slower "off-rate" from angiotensin-II receptors. Clinical trials are recommended.

    Topics: Alanine Transaminase; Ammonia; Angiotensin II Type 1 Receptor Blockers; Animals; Benzimidazoles; Biphenyl Compounds; Disease Models, Animal; End Stage Liver Disease; Enzyme-Linked Immunosorbent Assay; gamma-Glutamyltransferase; Glutathione; Liver; Liver Cirrhosis; Locomotion; Losartan; Male; Malondialdehyde; Motor Disorders; Random Allocation; Rats, Sprague-Dawley; Reproducibility of Results; Reverse Transcriptase Polymerase Chain Reaction; Tetrazoles; Thioacetamide; Treatment Outcome; Tumor Necrosis Factor-alpha

2017