thioacetamide and Chemical-and-Drug-Induced-Liver-Injury--Chronic

thioacetamide has been researched along with Chemical-and-Drug-Induced-Liver-Injury--Chronic* in 11 studies

Other Studies

11 other study(ies) available for thioacetamide and Chemical-and-Drug-Induced-Liver-Injury--Chronic

ArticleYear
Canagliflozin attenuates thioacetamide-induced liver injury through modulation of HMGB1/RAGE/TLR4 signaling pathways.
    Life sciences, 2023, Jun-01, Volume: 322

    Thioacetamide (TAA), a classic liver toxic compound, is used to establish experimental models of liver injury via induction of inflammation and oxidative stress. The current study was employed to explore the effects of canagliflozin (CANA), a sodium glucose cotransporter 2 (SGLT-2) inhibitor and antidiabetic agent, on TAA-induced acute liver injury.. A rat model of acute hepatic injury was established using single intraperitoneal injection of TAA (500 mg/kg) and rats received CANA (10 and 30 mg/kg, orally) once daily for 10 days prior to TAA challenge. Liver function, oxidative stress, and inflammatory parameters were measured in serum and hepatic tissues of rats.. Elevated levels of liver enzymes, hepatic malondialdehyde (MDA), and serum lactate dehydrogenase (LDH) were significantly attenuated by CANA. CANA also increased hepatic superoxide dismutase (SOD) and glutathione (GSH). Hepatic levels of high-mobility group box 1 (HMGB1), toll like receptor4 (TLR4), receptor for advanced glycation end products (RAGE), and pro-inflammatory cytokines (IL-6, and IL-1β) were normalized with CANA. Additionally, Hepatic expression of p-JNK/p-p38 MAPK was significantly attenuated by CANA compared to TAA-treated rats. CANA also decreased hepatic immunoexpression of NF-κB and TNF-α and attenuated hepatic histopathological alterations via reduction of inflammation and necrosis scores and collagen deposition. Moreover, mRNA expression levels of TNF-α and IL-6 were reduced upon CANA treatment.. CANA attenuates TAA-prompted acute liver damage, via suppressing HMGB1/RAGE/TLR4 signaling, regulation of oxidative stress and inflammation pathways.

    Topics: Animals; Canagliflozin; Chemical and Drug Induced Liver Injury, Chronic; Glutathione; HMGB1 Protein; Inflammation; Interleukin-6; Liver; NF-kappa B; Oxidative Stress; Rats; Receptor for Advanced Glycation End Products; Signal Transduction; Thioacetamide; Toll-Like Receptor 4; Tumor Necrosis Factor-alpha

2023
Association of resveratrol with the suppression of TNF-α/NF-kB/iNOS/HIF-1α axis-mediated fibrosis and systemic hypertension in thioacetamide-induced liver injury.
    Naunyn-Schmiedeberg's archives of pharmacology, 2022, Volume: 395, Issue:9

    Chronic liver injury can lead to hepatic failure and the only available method of treatment would be liver transplantation. The link between inflammation (TNF-α), nuclear factor-kappa B (NF-kB), nitrosative stress (iNOS) and hypoxia-inducible factor-1α (HIF-1α) in thioacetamide (TAA) induced liver fibrosis, and hypertension with and without the incorporation of the anti-inflammatory and antioxidant resveratrol (RES) has not been investigated before. Consequently, we injected rats with either 200 mg/kg TAA for 8 weeks starting at week 2 (model group) or pretreated them before TAA injections with RES (20 mg/kg) for 2 weeks and continued them on RES and TAA until being culled at week 10 (protective group). In the model group, we documented the induction of hepatic fibrosis and upregulation of tumor necrosis factor-α (TNF-α), NF-kB, inducible nitric oxide synthase (iNOS), HIF-1α and the profibrotic biomarkers alpha-smooth muscle actin (α-SMA) and matrix metalloproteinase-9 (MMP-9) that was significantly (p ≤ 0.0014) ameliorated by RES. RES also significantly (p ≤ 0.0232) reduced triglycerides (TG), cholesterol (CHOL), very low-density lipoprotein (vLDL-C), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure, and heart rate (HR) induction by TAA. Also, a significant (p < 0.0001) positive correlation between TNF-α/NF-kB/iNOS/HIF-1α axis-mediated fibrosis and hypertension and liver injury biomarkers was observed. These findings suggest that in the hepatotoxic compound, TAA is associated with TNF-α/NF-kB/iNOS/HIF-1α-mediated fibrosis and hypertension, whilst being inhibited by RES.

    Topics: Animals; Biomarkers; Chemical and Drug Induced Liver Injury, Chronic; Hypertension; Hypoxia-Inducible Factor 1, alpha Subunit; Liver; Liver Cirrhosis; NF-kappa B; Nitric Oxide Synthase Type II; Rats; Resveratrol; Thioacetamide; Tumor Necrosis Factor-alpha

2022
Early-immediate gene Egr1 is associated with TGFβ1 regulation of epigenetic reader Bromodomain-containing protein 4 via the canonical Smad3 signaling in hepatic stellate cells in vitro and in vivo.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2022, Volume: 36, Issue:11

    Upon chronic damage to the liver, multiple cytokines stimulate hepatic stellate cells (HSCs), causing the alterations of gene expression profiles and thus leading to HSC activation, a key step in liver fibrogenesis. Activated HSCs are the dominant contributors to liver fibrosis. Bromodomain containing protein 4 (BrD4), an important epigenetic reader, was demonstrated to concentrate on hundreds of enhancers associated with genes involved in multiple profibrotic pathways, thereby directing HSC activation and the fibrotic responses. The present studies were designed to examine the effect of transforming growth factor beta-1 (TGFβ1), the most potent pro-fibrotic cytokine, on BrD4 expression in HSCs and, if so, elucidated the underlying mechanisms in vitro and in vivo. The experiments employed the heterogeneous TGFβ1 knockout (TGFβ1

    Topics: Animals; Cell Cycle Proteins; Chemical and Drug Induced Liver Injury, Chronic; Early Growth Response Protein 1; Epigenesis, Genetic; Fibrosis; Hepatic Stellate Cells; Humans; Liver Cirrhosis; Mice; Nuclear Proteins; Smad3 Protein; Thioacetamide; Transcription Factors; Transforming Growth Factor beta1

2022
Panax Ginseng alleviates thioacetamide-induced liver injury in ovariectomized rats: Crosstalk between inflammation and oxidative stress.
    PloS one, 2021, Volume: 16, Issue:11

    Liver diseases impose a substantial health problem. Female hormones play a crucial role in the protection against chronic inflammatory diseases. Fifty female rats were allocated into five groups (n = 10). Group I comprised sham-operated rats. The remaining groups underwent ovariectomy at the beginning of the experiment. Group II served as the ovariectomy-control group. Groups III, IV & V received thioacetamide (TAA; 300 mg/kg; i.p.) to induce liver injury 6 weeks after ovariectomy. Group III served as the TAA-control group. Groups IV & V received panax ginseng (100 and 300 mg/kg/day, p.o.) for 6 weeks post TAA administration. All groups were investigated for liver function tests along with total antioxidant capacity (TAC), tumor necrosis factor-α (TNF-α) and advanced glycation end products (AGEs). Histopathological examination of liver tissues was performed followed by immunohistochemical staining for nuclear factor kappa-B (NF-kβ p65) and myeloperoxidase (MPO). Ovariectomized-rats showed a non-significant change in the measured parameters while TAA administration resulted in significant liver damage. Panax ginseng at both dose levels significantly improved the serum liver function tests and TAC along with decreasing the AGEs and TNF-α. It also restored the histopathological picture of liver tissue and decreased hepatic tissue inflammation via reduction of MPO and NF-kβ p65 immunoreactivity. The current study is the first to elucidate the effect of panax ginseng against TAA-induced liver injury in ovariectomized rats which mimic aged post-menopausal estrogen-deficient females. The study demonstrates the crosstalk between AGEs, NF-kβ and MPO in the modulation of inflammation. Panax ginseng possesses antioxidant and anti-inflammatory properties.

    Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Chemical and Drug Induced Liver Injury, Chronic; Female; Inflammation; Ovariectomy; Oxidative Stress; Panax; Phytochemicals; Phytotherapy; Rats; Rats, Wistar; Thioacetamide

2021
The Role of MIF in Hepatic Function, Oxidative Stress, and Inflammation in Thioacetamide-induced Liver Injury in Mice: Protective Effects of Betaine.
    Current medicinal chemistry, 2021, Volume: 28, Issue:16

    Macrophage migration inhibitory factor (MIF) is a multipotent cytokine that contributes to the inflammatory response to chemical liver injury. This cytokine exhibits pro- and anti-inflammatory effects depending on the etiology and stage of liver disease.. Our study aimed to investigate the role of MIF in oxidative stress and inflammation in the liver, and modulatory effects of betaine on MIF in thioacetamide (TAA)-induced chronic hepatic damage in mice.. The experiment was performed on wild type and knockout MIF-/- C57BL/6 mice. They were divided into the following groups: control; Bet-group that received betaine (2% wt/v dissolved in drinking water); MIF-/- mice group; MIF-/-+Bet; TAA-group that received TAA (200 mg/kg b.w.), intraperitoneally, 3x/week/8 weeks); TAA+Bet; MIF-/-+TAA, and MIF-/-+TAA+Bet. In TAA- and Bet-treated groups, animals received the same doses. After eight weeks of treatment, blood samples were collected for biochemical analysis, and liver specimens were prepared for the assessment of parameters of oxidative stress and inflammation.. In MIF-/-mice, TAA reduced transaminases, γ-glutamyltranspeptidase, bilirubin, malondialdehyde (MDA), oxidative protein products (AOPP), total oxidant status (TOS), C-reactive protein (CRP), IL-6, IFN-γ, and increased thiols and total antioxidant status (TAS). Betaine attenuated the mechanism of MIF and mediated effects in TAA-induced liver injury, reducing transaminases, γ-glutamyltranspeptidase, bilirubin, MDA, AOPP, TOS, CRP, IL-6, IFN-g, and increasing thiols.. MIF is a mediator in hepatotoxic, pro-oxidative, and proinflammatoryeffects of TAA-induced liver injury. MIF-targeted therapy can potentially mitigate oxidative stress and inflammation in the liver, but the exact mechanism of its action requires further investigation. Betaine increases anti-oxidative defense and attenuates hepatotoxic effects of MIF, suggesting that betaine can be used for the prevention and treatment of liver damage.

    Topics: Animals; Betaine; Chemical and Drug Induced Liver Injury; Chemical and Drug Induced Liver Injury, Chronic; Inflammation; Liver; Macrophage Migration-Inhibitory Factors; Mice; Mice, Inbred C57BL; Oxidative Stress; Thioacetamide

2021
The Ameliorative Effects of Fucoidan in Thioacetaide-Induced Liver Injury in Mice.
    Molecules (Basel, Switzerland), 2021, Mar-30, Volume: 26, Issue:7

    Liver disorders have been recognized as one major health concern. Fucoidan, a sulfated polysaccharide extracted from the brown seaweed Fucus serratus, has previously been reported as an anti-inflammatory and antioxidant. However, the discovery and validation of its hepatoprotective properties and elucidation of its mechanisms of action are still unknown. The objective of the current study was to investigate the effect and possible modes of action of a treatment of fucoidan against thioacetamide (TAA)-induced liver injury in male C57BL/6 mice by serum biochemical and histological analyses. The mouse model for liver damage was developed by the administration of TAA thrice a week for six weeks. The mice with TAA-induced liver injury were orally administered fucoidan once a day for 42 days. The treated mice showed significantly higher body weights; food intakes; hepatic antioxidative enzymes (catalase, glutathione peroxidase (GPx), and superoxide dismutase (SOD)); and a lower serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and C-reactive protein (CRP) levels. Additionally, a reduced hepatic IL-6 level and a decreased expression of inflammatory-related genes, such as cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) mRNA was observed. These results demonstrated that fucoidan had a hepatoprotective effect on liver injury through the suppression of the inflammatory responses and acting as an antioxidant. In addition, here, we validated the use of fucoidan against liver disorders with supporting molecular data.

    Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Chemical and Drug Induced Liver Injury, Chronic; Cytokines; Liver; Male; Mice; Mice, Inbred C57BL; Oxidative Stress; Polysaccharides; Thioacetamide

2021
Anti-hepatic fibrosis effects of AD-2 affecting the Raf-MEK signaling pathway and inflammatory factors in thioacetamide-induced liver injury.
    Journal of food science, 2021, Volume: 86, Issue:6

    25-Hydroxylprotopanaxadiol-3β, 12β, 20-triol (25-OH-PPD or AD-2) belongs to dammarane ginsenoside, and is commonly obtained from the acidic hydrolysate of total ginsensides of Panax ginseng. This study investigated the potential mechanism of AD-2 toward improving thioacetamide (TAA)-induced hepatic fibrosis in mice. Mice were divided into seven groups: control group, TAA model group, TAA + AD-2 (5, 10, and 20 mg/kg) groups, TAA + silymarin (100 mg/kg) group, and TAA + Fu Fang Biejia (FFBj; 300 mg/kg) group. All mice were treated to intraperitoneal TAA injection to establish a hepatic fibrosis model, and drugs were administered orally. The mechanism and related pathways underlying the AD-2-mediated action against hepatic fibrosis were explored by Western blotting and immunohistochemical staining. After AD-2 treatment, the expression levels of Lipin-1, SREBP1, and F4/80 significantly decreased, meanwhile the protein expressions levels of IL1β, IL1R1, IL18, Bax, Bid, Bcl-2, and cFlips also decreased. Furthermore, AD-2 inhibited RAF and MEK pathways. The results demonstrate that AD-2 can alleviate hepatic fibrosis. The mechanism is likely related to the regulation of lipid accumulation, inflammatory response, apoptosis pathway, and Raf-MEK signaling pathways, which provide a basis for clinical research for the treatment of hepatic fibrosis. PRACTICAL APPLICATION: Ginsenoside is one of the main active ingredients of ginseng, and can alleviate the symptoms of various diseases, for example, hepatic fibrosis. This paper mainly used Western blotting to explore its possible mechanism of action. The goal was to provide a reference for the development of traditional Chinese medicines for hepatic fibrosis.

    Topics: Animals; Chemical and Drug Induced Liver Injury, Chronic; Ginsenosides; Inflammation; Liver Cirrhosis; Male; Mice; Mitogen-Activated Protein Kinase Kinases; Panax; raf Kinases; Signal Transduction; Thioacetamide

2021
Concordance between Thioacetamide-Induced Liver Injury in Rat and Human In Vitro Gene Expression Data.
    International journal of molecular sciences, 2020, Jun-04, Volume: 21, Issue:11

    The immense resources required and the ethical concerns for animal-based toxicological studies have driven the development of in vitro and in silico approaches. Recently, we validated our approach in which the expression of a set of genes is uniquely associated with an organ-injury phenotype (injury module), by using thioacetamide, a known liver toxicant. Here, we sought to explore whether RNA-seq data obtained from human cells (in vitro) treated with thioacetamide-S-oxide (a toxic intermediate metabolite) would correlate across species with the injury responses found in rat cells (in vitro) after exposure to this metabolite as well as in rats exposed to thioacetamide (in vivo). We treated two human cell types with thioacetamide-S-oxide (primary hepatocytes with 0 (vehicle), 0.125 (low dose), or 0.25 (high dose) mM, and renal tubular epithelial cells with 0 (vehicle), 0.25 (low dose), or 1.00 (high dose) mM) and collected RNA-seq data 9 or 24 h after treatment. We found that the liver-injury modules significantly altered in human hepatocytes 24 h after high-dose treatment involved cellular infiltration and bile duct proliferation, which are linked to fibrosis. For high-dose treatments, our modular approach predicted the rat in vivo and in vitro results from human in vitro RNA-seq data with Pearson correlation coefficients of 0.60 and 0.63, respectively, which was not observed for individual genes or KEGG pathways.

    Topics: Animals; Biomarkers; Cells, Cultured; Chemical and Drug Induced Liver Injury, Chronic; Computational Biology; Gene Expression Profiling; Hepatocytes; Humans; Organ Specificity; Rats; Thioacetamide; Transcriptome

2020
Signaling pathways involved in p38-ERK and inflammatory factors mediated the anti-fibrosis effect of AD-2 on thioacetamide-induced liver injury in mice.
    Food & function, 2019, Jul-17, Volume: 10, Issue:7

    Ginseng is a type of medicinal and edible homologous plant that is very common in medicine, food and even cosmetics. Ginsenosides are the main active constituents of ginseng, which has many pharmacological activities. AD-2 is a type of ginsenoside extracted from ginseng and prepared in large quantities in our laboratory. However, the anti-fibrosis effects and mechanism of ginsenosides are rarely reported. In this study, the anti-fibrosis pharmacodynamics of AD-2 were evaluated. The results revealed that AD-2 could reduce the expression of collagen I, TIMP-1 and MMP-13, inhibit the deposition of extracellular matrix, and play an role in anti-hepatic fibrosis. The mechanism and related pathways of AD-2 against liver fibrosis have also been studied. Inflammatory factors (including TNF-α, IL-1β, caspase-1 and IL-6) associated with hepatic fibrosis, and the p-JNK and the p38-ERK pathways, have been shown to be associated with the anti-fibrotic effect of AD-2. In conclusion, our study reveals that AD-2, as a small-molecule, targeted drug for improving liver function, needs further study.

    Topics: Animals; Chemical and Drug Induced Liver Injury, Chronic; Collagen Type I; Cytokines; Disease Models, Animal; Ginsenosides; Liver; Liver Cirrhosis; Male; MAP Kinase Signaling System; Mice; p38 Mitogen-Activated Protein Kinases; Panax; Plant Extracts; Plants, Medicinal; Signal Transduction; Thioacetamide; Tissue Inhibitor of Metalloproteinase-1

2019
Ipomoea aquatica extract shows protective action against thioacetamide-induced hepatotoxicity.
    Molecules (Basel, Switzerland), 2012, May-22, Volume: 17, Issue:5

    In the Indian system of traditional medicine (Ayurveda) it is recommended to consume Ipomoea aquatica to mitigate disorders like jaundice. In this study, the protective effects of ethanol extract of I. aquatica against liver damage were evaluated in thioacetamide (TAA)-induced chronic hepatotoxicity in rats. There was no sign of toxicity in the acute toxicity study, in which Sprague-Dawley (SD) rats were orally fed with I. aquatica (250 and 500 mg/kg) for two months along with administration of TAA (i.p injection 200 mg/kg three times a week for two months). The results showed that the treatment of I. aquatica significantly lowered the TAA-induced serum levels of hepatic enzyme markers (ALP, ALT, AST, protein, albumin, bilirubin and prothrombin time). The hepatic content of activities and expressions SOD and CAT that were reduced by TAA were brought back to control levels by the plant extract supplement. Meanwhile, the rise in MDA level in the TAA receiving groups also were significantly reduced by I. aquatica treatment. Histopathology of hepatic tissues by H&E and Masson trichrome stains displayed that I. aquatica has reduced the incidence of liver lesions, including hepatic cells cloudy swelling, infiltration, hepatic necrosis, and fibrous connective tissue proliferation induced by TAA in rats. Therefore, the results of this study show that the protective effect of I. aquatica in TAA-induced liver damage might be contributed to its modulation on detoxification enzymes and its antioxidant and free radical scavenger effects. Moreover, it confirms a scientific basis for the traditional use of I. aquatica for the treatment of liver disorders.

    Topics: Animals; Catalase; Chemical and Drug Induced Liver Injury, Chronic; Ipomoea; Liver; Male; Malondialdehyde; Plant Extracts; Rats; Rats, Sprague-Dawley; Superoxide Dismutase; Thioacetamide

2012
Diet restriction enhances compensatory liver tissue repair and survival following administration of lethal dose of thioacetamide.
    Toxicology and applied pharmacology, 1998, Volume: 150, Issue:1

    Diet restriction is known to prevent a plethora of age-associated diseases including cancer. However, the effects of diet restriction on noncancer end points are not known. The objective of this study was to investigate whether diet restriction protects against hepatotoxicity of thioacetamide (TA), and if so, to investigate the underlying mechanism. Male Sprague-Dawley rats (250-275 g) were maintained on 65% of their ad libitum (AL) food consumption for a period of 3 weeks and then treated with a single low dose of 50 mg TA/kg i.p.. Plasma enzymes (ALT and SDH), hepatic glycogen levels, and 3H-thymidine incorporation into hepatocellular nuclear DNA were measured during a time course (0-120 h) after TA administration. Liver sections were examined for histopathology, and cell-cycle progression was assessed by proliferating cell nuclear antigen (PCNA) immunohistochemistry. In AL rats hepatic necrosis was evident at 12 h, peaked at 36 h, persisted up to 72 h, and was resolved by 96 h. In the diet-restricted (DR) group hepatic necrosis was observed at 12 h, peaked at 24 h, persisted till 72 h, and was resolved by 96 h. Maximal injury indicated by enzyme elevation occurred in DR rats and was approximately sixfold greater than that observed in the AL group. Histopathological examination of the liver sections revealed liver injury concordant with plasma enzyme elevations. There was a higher and sustained S-phase synthesis in the DR rats compared to AL group. S-phase stimulation was evident at 36 h, peaked at 48 h, and persisted until 96 h in the DR rats, whereas in the AL rats peak S-phase stimulation occurred at 36 h and subsided by 72 h. PCNA studies revealed a corresponding stimulation of cell-cycle progression indicating highly stimulated compensatory tissue repair. The 14-day lethality experiments (600 mg TA/kg i.p.) indicated 70% survival in the DR rats compared to 10% survival in the AL group. Although diet restriction increases hepatotoxic injury of TA, it protects from the lethal outcome by enhanced liver tissue repair. Comparison of liver injury and tissue repair employing an equitoxic dose (600 mg TA/kg in AL rats yields similar liver injury as observed with 50 mg TA/kg in DR rats) revealed that in spite of near equal injury up to 36 h, tissue repair response in DR rats is much higher. The compensatory tissue repair allows the DR rats to escape death in contrast to much lower compensation in AL rats leading to progression of liver injury culminating in

    Topics: Animals; Carcinogens; Chemical and Drug Induced Liver Injury, Chronic; DNA; Drinking; Enzymes; Liver; Liver Glycogen; Male; Organ Size; Proliferating Cell Nuclear Antigen; Rats; Rats, Sprague-Dawley; Survival Analysis; Thioacetamide; Thymidine; Weight Gain

1998