thienopyridine and Arterial-Occlusive-Diseases

thienopyridine has been researched along with Arterial-Occlusive-Diseases* in 2 studies

Reviews

1 review(s) available for thienopyridine and Arterial-Occlusive-Diseases

ArticleYear
Preclinical and clinical studies with selective reversible direct P2Y12 antagonists.
    Seminars in thrombosis and hemostasis, 2005, Volume: 31, Issue:2

    An important role for adenosine diphosphate (ADP)-induced platelet activation and aggregation was proposed more than 40 years ago. The clinical use of clopidogrel, a prodrug of an irreversible P2Y (12) antagonist, has further proved the relevance of inhibiting signaling via the platelet-specific P2Y (12) ADP receptor in the prevention of cardiovascular events. Pharmacological studies at AstraZeneca R&D Charnwood have identified direct, selective, and competitive P2Y (12) antagonists, including cangrelor (also known as AR-C69931MX), which is suitable for intravenous administration, and AZD6140, which is suitable for oral administration. In preclinical use, these compounds predictably and effectively inhibited platelet aggregation without significant increases in bleeding time. In clinical use, these compounds may have significant advantages over current antiplatelet agents. This article summarizes preclinical and clinical data on cangrelor and AZD6140 and discusses the potential of these compounds as novel antiplatelet therapies.

    Topics: Adenosine; Adenosine Diphosphate; Adenosine Monophosphate; Administration, Oral; Animals; Arterial Occlusive Diseases; Clinical Trials as Topic; Dogs; Double-Blind Method; Drug Evaluation, Preclinical; Female; Fibrinolytic Agents; Humans; Injections, Intravenous; Male; Membrane Proteins; Platelet Aggregation; Platelet Aggregation Inhibitors; Purinergic P2 Receptor Antagonists; Pyridines; Rabbits; Randomized Controlled Trials as Topic; Receptors, Purinergic P2Y12; Thrombosis; Ticagrelor

2005

Other Studies

1 other study(ies) available for thienopyridine and Arterial-Occlusive-Diseases

ArticleYear
Prevention of occlusive arterial thrombus formation by a single loading dose of prasugrel suppresses neointimal hyperplasia in mice.
    Thrombosis research, 2015, Volume: 136, Issue:6

    The present study examined the effects of prasugrel in a mouse model of thrombosis-induced neointimal hyperplasia. Following carotid artery injury by application of ferric chloride solution, thrombus formation was assessed on Day 1 and neointimal thickening was assessed on Day 21. Single administrations of prasugrel at 0.3-3mg/kg (p.o.) resulted in a dose-related and sustained inhibition of ADP-induced platelet aggregation through 24h. Single and multiple (1 and 3 weeks) administration of prasugrel (3mg/kg loading and 1mg/kg/day maintenance doses) resulted in a marked inhibition of neointimal thickening in the injured artery. In the dose-response study, a single administration of prasugrel at 0.3-3mg/kg (p.o.) dose-relatedly inhibited thrombus formation and neointimal thickening on Days 1 and 21, respectively. The degree of neointimal hyperplasia in the injured artery correlated significantly with the thrombus indices, time to occlusion and patency rate. To explore possible mechanisms of inhibition of neointimal hyperplasia by prasugrel, mRNA expression levels of inflammatory and fibrosis markers were determined in injured arteries. Prasugrel treatment resulted in reduced MCP-1, ICAM-1 and TGF-β mRNA levels on Day 2 (24h after the injury) and Day 8 (1 week after the injury) in the target arteries. In conclusion, we found that a single oral loading dose of prasugrel markedly prevented neointimal hyperplasia by inhibiting platelet activation and thrombus formation and was associated with inhibition of the expression of inflammatory and fibrosis markers, including MCP-1, ICAM-1 and TGF-β, in the injured arteries.

    Topics: Adenosine Diphosphate; Animals; Aorta; Arterial Occlusive Diseases; Arteries; Carotid Arteries; Chemokine CCL2; Chlorides; Ferric Compounds; Hyperplasia; Inflammation; Intercellular Adhesion Molecule-1; Mice; Mice, Inbred C57BL; Neointima; Platelet Aggregation; Prasugrel Hydrochloride; Pyridines; RNA, Messenger; Thrombosis; Time Factors; Transforming Growth Factor beta1

2015