thiamine has been researched along with Disease Models, Animal in 76 studies
thiamine(1+) : A primary alcohol that is 1,3-thiazol-3-ium substituted by (4-amino-2-methylpyrimidin-5-yl)methyl, methyl and 2-hydroxyethyl groups at positions 3, 4 and 5, respectively.
Disease Models, Animal: Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases.
Excerpt | Relevance | Reference |
---|---|---|
"At present, thiamine deficiency (TD) is managed with administration of high doses of thiamine." | 8.02 | Thiamine deficiency and recovery: impact of recurrent episodes and beneficial effect of treatment with Trolox and dimethyl sulfoxide. ( da Silva Aguiar, HQ; de Araújo, SS; de Cordova, CAS; de Cordova, FM; Gomes, KC; Lima, FWB, 2021) |
" The study looked at how the thiamine supplement impacted pentylenetetrazole (PTZ)-induced seizures in rats and pentylenetetrazole-induced neurotoxicity in the SH-SY5Y cell line." | 8.02 | The modulator action of thiamine against pentylenetetrazole-induced seizures, apoptosis, nitric oxide, and oxidative stress in rats and SH-SY5Y neuronal cell line. ( Ergul, M; Taskiran, AS, 2021) |
"The effects of chronic EtOH consumption, associated or not with thiamine deficiency (TD), on cognitive impairment, oxidative damage, and β-amyloid (Aβ) peptide accumulation in the brain were investigated in male C57BL/6 mice." | 7.85 | Comparative effects of EtOH consumption and thiamine deficiency on cognitive impairment, oxidative damage, and β-amyloid peptide overproduction in the brain. ( Gao, YQ; Gong, YS; Guo, J; Hou, FL; Hu, K; Liang, CY; Song, FL; Yang, LQ, 2017) |
"The effect of oral thiamine supplementation (2%) on hepatocellular carcinoma induced by Cu(2+) accumulation in the livers of Atp7b animals at 4, 6, 9, 12, 16, and 21 months was demonstrated using gross morphology and multi-nucleate analysis." | 7.77 | Thiamine supplementation attenuated hepatocellular carcinoma in the Atp7b mouse model of Wilson's disease. ( Sheline, CT, 2011) |
"Thiamine deficiency caused death of CGNs but ethanol did not." | 7.75 | Ethanol promotes thiamine deficiency-induced neuronal death: involvement of double-stranded RNA-activated protein kinase. ( Fan, Z; Ke, ZJ; Luo, J; Wang, X, 2009) |
"Wernicke's encephalopathy (WE) is characterized by lesions in thalamus, hypothalamus (including mammillary nuclei), and inferior colliculi, results in serious disabilities, has an etiology of thiamine deficiency, is treatable with thiamine, and occurs most commonly with alcoholism." | 7.74 | Development and resolution of brain lesions caused by pyrithiamine- and dietary-induced thiamine deficiency and alcohol exposure in the alcohol-preferring rat: a longitudinal magnetic resonance imaging and spectroscopy study. ( Adalsteinsson, E; Bell, RL; Pfefferbaum, A; Sullivan, EV, 2007) |
" A rodent model of Wernicke-Korsakoff Syndrome (WKS), acute pyrithiamine-induced thiamine deficiency (PTD), produces diencephalic damage and impairments of memory similar to what is seen in WKS patients." | 7.72 | Age-related vulnerability to diencephalic amnesia produced by thiamine deficiency: the role of time of insult. ( Pitkin, SR; Savage, LM, 2004) |
"Neurodegenerative diseases are characterized by abnormalities in oxidative processes, region-selective neuron loss, and diminished thiamine-dependent enzymes." | 7.72 | Reversal of thiamine deficiency-induced neurodegeneration. ( DeGiorgio, LA; Gibson, GE; Ke, ZJ; Volpe, BT, 2003) |
"We produced thiamine deficiency by treating mice with a thiamine deficient (TD) diet, but not with pyrithiamine, a thiamine antagonist." | 7.71 | Antinociceptive effect following dietary-induced thiamine deficiency in mice: involvement of substance P and somatostatin. ( Arai, Y; Asao, T; Hozumi, S; Kinemuchi, H; Kisara, K; Nakagawasai, O; Niijima, F; Tadano, T; Tan-No, K; Taniguchi, R; Yasuhara, H, 2001) |
"Rats that had recovered from pyrithiamine-induced thiamine deficiency (PTD) were trained on tasks motivated by escape from mild footshock." | 7.68 | Analysis of aversively conditioned learning and memory in rats recovered from pyrithiamine-induced thiamine deficiency. ( Knoth, RL; Langlais, PJ; Mair, RG; Otto, TA; Rabchenuk, SA, 1991) |
"The [14C]deoxyglucose technique was used to determine local cerebral glucose utilization (LCGU) in the rat at various times in two models of thiamine deficiency: pyrithiamine administration in addition to dietary deprivation, and dietary deprivation alone." | 7.66 | Sequence of metabolic, clinical, and histological events in experimental thiamine deficiency. ( Hakim, AM; Pappius, HM, 1983) |
"Thiamine/biotin treatment of R6/1 HD mice to compensate for TPK1 dysregulation restores OL maturation and rescues neuronal pathology." | 5.72 | Huntington disease oligodendrocyte maturation deficits revealed by single-nucleus RNAseq are rescued by thiamine-biotin supplementation. ( Adam, M; Al-Dalahmah, O; Casaccia, P; Dansu, DK; Davidson, S; Flowers, XE; Fraenkel, E; Gold, MP; Goldman, JE; Hickman, RA; Khan, F; Lau, A; Lim, RG; McClure, N; Menon, V; Michael, N; Miramontes, R; Miyoshi, E; Ofori, K; Park, HJ; Paryani, F; Reidling, JC; Reyes-Ortiz, AM; Swarup, V; Tang, A; Tang, G; Thompson, LM; Vonsattel, JP; Wu, J, 2022) |
"Sepsis was induced in female mice using the cecal ligation and puncture (CLP) model." | 5.56 | Hydrocortisone, Ascorbic Acid, and Thiamine (HAT) Therapy Decreases Oxidative Stress, Improves Cardiovascular Function, and Improves Survival in Murine Sepsis. ( Arnaout, L; Kim, J; Remick, D, 2020) |
"Hydrocortisone, ascorbic acid, and thiamine therapy has minimal benefits in pneumonia." | 4.12 | Machine learning and murine models explain failures of clinical sepsis trials. ( Kim, J; Remick, DG; Rop, K; Stolarski, AE; Wee, K; Zhang, Q, 2022) |
"At present, thiamine deficiency (TD) is managed with administration of high doses of thiamine." | 4.02 | Thiamine deficiency and recovery: impact of recurrent episodes and beneficial effect of treatment with Trolox and dimethyl sulfoxide. ( da Silva Aguiar, HQ; de Araújo, SS; de Cordova, CAS; de Cordova, FM; Gomes, KC; Lima, FWB, 2021) |
" The study looked at how the thiamine supplement impacted pentylenetetrazole (PTZ)-induced seizures in rats and pentylenetetrazole-induced neurotoxicity in the SH-SY5Y cell line." | 4.02 | The modulator action of thiamine against pentylenetetrazole-induced seizures, apoptosis, nitric oxide, and oxidative stress in rats and SH-SY5Y neuronal cell line. ( Ergul, M; Taskiran, AS, 2021) |
" The present study was designed to investigate the effect of acute and chronic administration of thiamine alone and in combination with sub-effective dose of diazepam on pentylenetetrazole (PTZ)-induced tonic-clonic seizures in mice." | 3.91 | Anticonvulsant effects of thiamine on pentylenetetrazole-induced seizure in mice. ( Abed, A; Alinejad, M; Banafshe, HR; Heydari, A; Mesdaghinia, A, 2019) |
"The effects of chronic EtOH consumption, associated or not with thiamine deficiency (TD), on cognitive impairment, oxidative damage, and β-amyloid (Aβ) peptide accumulation in the brain were investigated in male C57BL/6 mice." | 3.85 | Comparative effects of EtOH consumption and thiamine deficiency on cognitive impairment, oxidative damage, and β-amyloid peptide overproduction in the brain. ( Gao, YQ; Gong, YS; Guo, J; Hou, FL; Hu, K; Liang, CY; Song, FL; Yang, LQ, 2017) |
"The effect of oral thiamine supplementation (2%) on hepatocellular carcinoma induced by Cu(2+) accumulation in the livers of Atp7b animals at 4, 6, 9, 12, 16, and 21 months was demonstrated using gross morphology and multi-nucleate analysis." | 3.77 | Thiamine supplementation attenuated hepatocellular carcinoma in the Atp7b mouse model of Wilson's disease. ( Sheline, CT, 2011) |
"Thiamine deficiency caused death of CGNs but ethanol did not." | 3.75 | Ethanol promotes thiamine deficiency-induced neuronal death: involvement of double-stranded RNA-activated protein kinase. ( Fan, Z; Ke, ZJ; Luo, J; Wang, X, 2009) |
"Wernicke's encephalopathy (WE) is characterized by lesions in thalamus, hypothalamus (including mammillary nuclei), and inferior colliculi, results in serious disabilities, has an etiology of thiamine deficiency, is treatable with thiamine, and occurs most commonly with alcoholism." | 3.74 | Development and resolution of brain lesions caused by pyrithiamine- and dietary-induced thiamine deficiency and alcohol exposure in the alcohol-preferring rat: a longitudinal magnetic resonance imaging and spectroscopy study. ( Adalsteinsson, E; Bell, RL; Pfefferbaum, A; Sullivan, EV, 2007) |
" Since dietary thiamine deficiency (TD) in mice is considered as a putative model of WKS, it was used in the present study to investigate the function of serotonergic neurons in this disorder." | 3.74 | Enhanced head-twitch response to 5-HT-related agonists in thiamine-deficient mice. ( Arai, Y; Mitazaki, S; Murata, A; Nakagawasai, O; Niijima, F; Ohba, A; Tadano, T; Tan-No, K; Wakui, K, 2007) |
"Long-term thiamine deficiency has been largely documented, whilst little is known about effects of short-term depletion/repletion periods on thiamine vitamers status." | 3.74 | Restoration of thiamine status with white or whole wheat bread in a thiamine-depleted rat model. ( Batifoulier, F; Besson, C; Chanliaud, E; Demigné, C; Rémésy, C; Verny, MA, 2007) |
"Neurodegenerative diseases are characterized by abnormalities in oxidative processes, region-selective neuron loss, and diminished thiamine-dependent enzymes." | 3.72 | Reversal of thiamine deficiency-induced neurodegeneration. ( DeGiorgio, LA; Gibson, GE; Ke, ZJ; Volpe, BT, 2003) |
" A rodent model of Wernicke-Korsakoff Syndrome (WKS), acute pyrithiamine-induced thiamine deficiency (PTD), produces diencephalic damage and impairments of memory similar to what is seen in WKS patients." | 3.72 | Age-related vulnerability to diencephalic amnesia produced by thiamine deficiency: the role of time of insult. ( Pitkin, SR; Savage, LM, 2004) |
"We produced thiamine deficiency by treating mice with a thiamine deficient (TD) diet, but not with pyrithiamine, a thiamine antagonist." | 3.71 | Antinociceptive effect following dietary-induced thiamine deficiency in mice: involvement of substance P and somatostatin. ( Arai, Y; Asao, T; Hozumi, S; Kinemuchi, H; Kisara, K; Nakagawasai, O; Niijima, F; Tadano, T; Tan-No, K; Taniguchi, R; Yasuhara, H, 2001) |
"Rats that had recovered from pyrithiamine-induced thiamine deficiency (PTD) were trained on tasks motivated by escape from mild footshock." | 3.68 | Analysis of aversively conditioned learning and memory in rats recovered from pyrithiamine-induced thiamine deficiency. ( Knoth, RL; Langlais, PJ; Mair, RG; Otto, TA; Rabchenuk, SA, 1991) |
"The [14C]deoxyglucose technique was used to determine local cerebral glucose utilization (LCGU) in the rat at various times in two models of thiamine deficiency: pyrithiamine administration in addition to dietary deprivation, and dietary deprivation alone." | 3.66 | Sequence of metabolic, clinical, and histological events in experimental thiamine deficiency. ( Hakim, AM; Pappius, HM, 1983) |
"Neuroinflammation is caused due to the activation of microglia along with pro-inflammatory cytokines." | 1.91 | Neuroprotective effects of vitamin B1 on memory impairment and suppression of pro-inflammatory cytokines in traumatic brain injury. ( Ali, Y; Amin, Z; Husn, M; Kanwal, L; Sabir, K; Shah, SA; Shah, SF, 2023) |
"The neurodegeneration of Alzheimer's disease (AD) affects not only brain structures associate with cognition early in the progression of the disease, but other areas such as the hypothalamus, a region involved in the control of metabolism and appetite." | 1.72 | Benfotiamine protects against hypothalamic dysfunction in a STZ-induced model of neurodegeneration in rats. ( Cardinali, CAEF; Donato, J; Gonçalves, AC; Guerra-Shinohara, EM; Kleinridders, A; Leboucher, A; Lima, GCA; Moraes, RCM; Portari, GV; Torrão, ADS, 2022) |
"Thiamine/biotin treatment of R6/1 HD mice to compensate for TPK1 dysregulation restores OL maturation and rescues neuronal pathology." | 1.72 | Huntington disease oligodendrocyte maturation deficits revealed by single-nucleus RNAseq are rescued by thiamine-biotin supplementation. ( Adam, M; Al-Dalahmah, O; Casaccia, P; Dansu, DK; Davidson, S; Flowers, XE; Fraenkel, E; Gold, MP; Goldman, JE; Hickman, RA; Khan, F; Lau, A; Lim, RG; McClure, N; Menon, V; Michael, N; Miramontes, R; Miyoshi, E; Ofori, K; Park, HJ; Paryani, F; Reidling, JC; Reyes-Ortiz, AM; Swarup, V; Tang, A; Tang, G; Thompson, LM; Vonsattel, JP; Wu, J, 2022) |
"On the 15th day, the seizure was induced (except the control group) by intraperitoneal injection of PTZ." | 1.62 | Anti-convulsive Effect of Thiamine and Melatonin Combination in Mice: Involvement of Oxidative Stress. ( Dehdashtian, E; Fatemi, I; Hemati, K; Hosseinzadeh, A; Karimi, MY; Mehrzadi, S, 2021) |
"Sepsis was induced in female mice using the cecal ligation and puncture (CLP) model." | 1.56 | Hydrocortisone, Ascorbic Acid, and Thiamine (HAT) Therapy Decreases Oxidative Stress, Improves Cardiovascular Function, and Improves Survival in Murine Sepsis. ( Arnaout, L; Kim, J; Remick, D, 2020) |
"The major adverse effect associated with systemic administration of Fluconazole (FLZ), is hepatic toxicity." | 1.51 | Vitamin B combination reduces fluconazole toxicity in Wistar rats. ( Al-Abbasi, FA; Anwar, F; Mushtaq, G; Sadath, S, 2019) |
" The present data suggest that thiamine precursors with high bioavailability might be useful as a complementary therapy in several neuropsychiatric disorders." | 1.46 | Thiamine and benfotiamine prevent stress-induced suppression of hippocampal neurogenesis in mice exposed to predation without affecting brain thiamine diphosphate levels. ( Anthony, DC; Bazhenova, N; Bettendorff, L; Caron, N; Coumans, B; Gorlova, A; Lakaye, B; Malgrange, B; Markova, N; Pavlov, D; Sambon, M; Shevtsova, E; Strekalova, T; Svistunov, A; Vignisse, J; Wins, P, 2017) |
"Human study: Post-cardiac arrest patients had lower PDH activity in mononuclear cells than did healthy volunteers (estimated difference: -5." | 1.43 | Thiamine as a neuroprotective agent after cardiac arrest. ( Andersen, LW; Bagchi, A; Berg, KM; Cocchi, MN; Donnino, MW; Hirai, S; Ichinose, F; Ikeda, K; Kida, K; Liu, X; Marutani, E; Sakaguchi, M, 2016) |
"Sepsis was induced by cecal ligation and puncture with the cecum ligated below the cecal valve at 25%, 50%, and 75% of cecal length, defined as severe, moderate, and mild sepsis, respectively." | 1.43 | Inhibition of Intestinal Thiamin Transport in Rat Model of Sepsis. ( Fang, L; Said, HM; Sassoon, CS; Subramanian, VS; Zhu, E, 2016) |
" On the 20th day after the start of TD feeding, the increased duration of immobility time induced by TD was shortened by chronic administration of the tricyclic antidepressant imipramine (10 mg/kg, i." | 1.31 | Characteristics of depressive behavior induced by feeding thiamine-deficient diet in mice. ( Esashi, A; Hozumi, S; Kisara, K; Nakagawasai, O; Niijima, F; Tadano, T; Tan-No, K; Taniguchi, R, 2001) |
"Because several previous authors have repeatedly described treatment with thiamine as one of the sufficient prophylactic measures in slowing the development of viscerocranial malformations, especially cleft alveolus and palate, it is of utmost importance that the timing of treatment and dosage of thiamine be taken into consideration not only in animal experiments but also when applying results to humans." | 1.30 | Application of thiamine in preventing malformations, specifically cleft alveolus and palate, during the intrauterine development of rats. ( Bienengräber, V; Fanghänel, J; Kundt, G; Malek, FA, 1997) |
"Thiamine treatment of symptomatic rats led to reversal of neurological signs and to concomitant reductions of the cerebral PDHC abnormalities." | 1.27 | Activities of thiamine-dependent enzymes in two experimental models of thiamine-deficiency encephalopathy: 1. The pyruvate dehydrogenase complex. ( Besnard, AM; Butterworth, RF; Giguere, JF, 1985) |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 14 (18.42) | 18.7374 |
1990's | 3 (3.95) | 18.2507 |
2000's | 13 (17.11) | 29.6817 |
2010's | 31 (40.79) | 24.3611 |
2020's | 15 (19.74) | 2.80 |
Authors | Studies |
---|---|
Gomes, KC | 1 |
Lima, FWB | 1 |
da Silva Aguiar, HQ | 1 |
de Araújo, SS | 1 |
de Cordova, CAS | 1 |
de Cordova, FM | 1 |
Yako, H | 1 |
Niimi, N | 1 |
Kato, A | 1 |
Takaku, S | 1 |
Tatsumi, Y | 1 |
Nishito, Y | 1 |
Kato, K | 1 |
Sango, K | 1 |
Zheng, Y | 1 |
Chen, ZY | 1 |
Ma, WJ | 1 |
Wang, QZ | 1 |
Liang, H | 1 |
Ma, AG | 1 |
Stolarski, AE | 1 |
Kim, J | 2 |
Rop, K | 1 |
Wee, K | 1 |
Zhang, Q | 2 |
Remick, DG | 1 |
Moraes, RCM | 1 |
Lima, GCA | 1 |
Cardinali, CAEF | 1 |
Gonçalves, AC | 1 |
Portari, GV | 2 |
Guerra-Shinohara, EM | 1 |
Leboucher, A | 1 |
Donato, J | 1 |
Kleinridders, A | 1 |
Torrão, ADS | 1 |
Uckun, FM | 1 |
Saeed, M | 1 |
Awili, M | 1 |
Ozercan, IH | 1 |
Qazi, S | 1 |
Lee, C | 1 |
Shibli, A | 1 |
Skolnick, AW | 1 |
Prusmack, A | 1 |
Varon, J | 1 |
Barrera, CI | 1 |
Orhan, C | 1 |
Volk, M | 1 |
Sahin, K | 1 |
Vitali, R | 1 |
Prioreschi, C | 1 |
Lorenzo Rebenaque, L | 1 |
Colantoni, E | 1 |
Giovannini, D | 1 |
Frusciante, S | 1 |
Diretto, G | 1 |
Marco-Jiménez, F | 1 |
Mancuso, M | 1 |
Casciati, A | 1 |
Pazzaglia, S | 1 |
Lim, RG | 1 |
Al-Dalahmah, O | 1 |
Wu, J | 1 |
Gold, MP | 1 |
Reidling, JC | 1 |
Tang, G | 1 |
Adam, M | 1 |
Dansu, DK | 1 |
Park, HJ | 1 |
Casaccia, P | 1 |
Miramontes, R | 1 |
Reyes-Ortiz, AM | 1 |
Lau, A | 1 |
Hickman, RA | 1 |
Khan, F | 1 |
Paryani, F | 1 |
Tang, A | 1 |
Ofori, K | 1 |
Miyoshi, E | 1 |
Michael, N | 1 |
McClure, N | 1 |
Flowers, XE | 1 |
Vonsattel, JP | 1 |
Davidson, S | 1 |
Menon, V | 1 |
Swarup, V | 1 |
Fraenkel, E | 1 |
Goldman, JE | 1 |
Thompson, LM | 1 |
Husn, M | 1 |
Amin, Z | 1 |
Ali, Y | 1 |
Kanwal, L | 1 |
Sabir, K | 1 |
Shah, SA | 1 |
Shah, SF | 1 |
Li, EY | 1 |
Zhao, PJ | 1 |
Jian, J | 1 |
Yin, BQ | 1 |
Sun, ZY | 1 |
Xu, CX | 1 |
Tang, YC | 1 |
Wu, H | 1 |
Lewis, MJ | 1 |
Ahmed, LA | 1 |
Hassan, OF | 1 |
Galal, O | 1 |
Mansour, DF | 1 |
El-Khatib, A | 1 |
Taskiran, AS | 1 |
Ergul, M | 1 |
Dehdashtian, E | 1 |
Hosseinzadeh, A | 1 |
Hemati, K | 1 |
Karimi, MY | 1 |
Fatemi, I | 1 |
Mehrzadi, S | 1 |
Gong, YS | 1 |
Hu, K | 1 |
Yang, LQ | 1 |
Guo, J | 1 |
Gao, YQ | 1 |
Song, FL | 1 |
Hou, FL | 1 |
Liang, CY | 1 |
Vignisse, J | 3 |
Sambon, M | 1 |
Gorlova, A | 1 |
Pavlov, D | 2 |
Caron, N | 1 |
Malgrange, B | 1 |
Shevtsova, E | 1 |
Svistunov, A | 3 |
Anthony, DC | 2 |
Markova, N | 3 |
Bazhenova, N | 2 |
Coumans, B | 1 |
Lakaye, B | 1 |
Wins, P | 1 |
Strekalova, T | 3 |
Bettendorff, L | 4 |
Mesdaghinia, A | 1 |
Alinejad, M | 1 |
Abed, A | 1 |
Heydari, A | 1 |
Banafshe, HR | 1 |
Chekhonin, V | 1 |
Pomytkin, I | 1 |
Lioudyno, V | 1 |
Ponomarev, E | 1 |
Lesch, KP | 2 |
Abdel-Haleem, AM | 1 |
Hefzi, H | 1 |
Mineta, K | 1 |
Gao, X | 1 |
Gojobori, T | 1 |
Palsson, BO | 1 |
Lewis, NE | 1 |
Jamshidi, N | 1 |
Onk, D | 1 |
Mammadov, R | 1 |
Suleyman, B | 1 |
Cimen, FK | 1 |
Cankaya, M | 1 |
Gul, V | 1 |
Altuner, D | 1 |
Senol, O | 1 |
Kadioglu, Y | 1 |
Malkoc, I | 1 |
Suleyman, H | 2 |
Sang, S | 1 |
Pan, X | 1 |
Chen, Z | 1 |
Zeng, F | 1 |
Pan, S | 1 |
Liu, H | 1 |
Jin, L | 1 |
Fei, G | 1 |
Wang, C | 1 |
Ren, S | 1 |
Jiao, F | 1 |
Bao, W | 1 |
Zhou, W | 1 |
Guan, Y | 1 |
Zhang, Y | 1 |
Shi, H | 1 |
Wang, Y | 3 |
Yu, X | 1 |
Zhong, C | 1 |
Liu, J | 1 |
Gao, W | 1 |
Pu, L | 1 |
Wei, J | 1 |
Xin, Z | 1 |
Shi, T | 1 |
Guo, C | 1 |
Evans, E | 1 |
Piccio, L | 1 |
Cross, AH | 1 |
Tapias, V | 1 |
Jainuddin, S | 1 |
Ahuja, M | 1 |
Stack, C | 1 |
Elipenahli, C | 1 |
Gerges, M | 1 |
Starkova, N | 1 |
Xu, H | 1 |
Starkov, AA | 1 |
Hushpulian, DM | 1 |
Smirnova, NA | 1 |
Gazaryan, IG | 1 |
Kaidery, NA | 1 |
Wakade, S | 1 |
Calingasan, NY | 1 |
Thomas, B | 1 |
Gibson, GE | 2 |
Dumont, M | 1 |
Beal, MF | 1 |
Scheller, K | 3 |
Quitzke, V | 1 |
Kappler, M | 1 |
Al-Abbasi, FA | 1 |
Sadath, S | 1 |
Mushtaq, G | 1 |
Anwar, F | 1 |
Arnaout, L | 1 |
Remick, D | 1 |
Radonjic, T | 1 |
Rankovic, M | 1 |
Ravic, M | 1 |
Zivkovic, V | 1 |
Srejovic, I | 1 |
Jeremic, J | 1 |
Jeremic, N | 1 |
Sretenovic, J | 1 |
Matic, S | 1 |
Jakovljevic, V | 1 |
Nikolic Turnic, T | 1 |
Röckl, T | 1 |
Scheller, C | 1 |
Schubert, J | 2 |
Hamada, S | 1 |
Hirashima, H | 1 |
Imaeda, M | 1 |
Okamoto, Y | 1 |
Hamaguchi-Hamada, K | 1 |
Kurumata-Shigeto, M | 1 |
Turan, MI | 1 |
Tan, H | 1 |
Cetin, N | 1 |
Cayir, A | 1 |
Zahr, NM | 1 |
Alt, C | 1 |
Mayer, D | 1 |
Rohlfing, T | 1 |
Manning-Bog, A | 1 |
Luong, R | 1 |
Sullivan, EV | 2 |
Pfefferbaum, A | 2 |
Mouton-Liger, F | 1 |
Rebillat, AS | 1 |
Gourmaud, S | 1 |
Paquet, C | 1 |
Leguen, A | 1 |
Dumurgier, J | 1 |
Bernadelli, P | 1 |
Taupin, V | 1 |
Pradier, L | 1 |
Rooney, T | 1 |
Hugon, J | 1 |
E Dief, A | 1 |
M Samy, D | 1 |
I Dowedar, F | 1 |
Kalmring, F | 1 |
Sassoon, CS | 1 |
Zhu, E | 1 |
Fang, L | 1 |
Subramanian, VS | 1 |
Said, HM | 1 |
Ikeda, K | 1 |
Liu, X | 1 |
Kida, K | 1 |
Marutani, E | 1 |
Hirai, S | 1 |
Sakaguchi, M | 1 |
Andersen, LW | 1 |
Bagchi, A | 1 |
Cocchi, MN | 1 |
Berg, KM | 1 |
Ichinose, F | 1 |
Donnino, MW | 1 |
Liu, L | 1 |
Ma, SH | 1 |
Xia, LJ | 1 |
Ovidio, PP | 1 |
Deminice, R | 1 |
Jordão, AA | 1 |
Hazell, AS | 1 |
Afadlal, S | 1 |
Cheresh, DA | 1 |
Azar, A | 1 |
Yang, G | 1 |
Li, W | 1 |
Fan, Z | 2 |
Sun, A | 1 |
Luo, J | 2 |
Ke, ZJ | 3 |
Wang, X | 1 |
Katare, RG | 1 |
Caporali, A | 1 |
Oikawa, A | 1 |
Meloni, M | 1 |
Emanueli, C | 1 |
Madeddu, P | 1 |
Karachalias, N | 1 |
Babaei-Jadidi, R | 1 |
Rabbani, N | 1 |
Thornalley, PJ | 1 |
Sheline, CT | 1 |
Nikseresht, S | 1 |
Etebary, S | 1 |
Karimian, M | 1 |
Nabavizadeh, F | 1 |
Zarrindast, MR | 1 |
Sadeghipour, HR | 1 |
DeGiorgio, LA | 1 |
Volpe, BT | 1 |
Pitkin, SR | 1 |
Savage, LM | 1 |
Wu, S | 1 |
Ren, J | 1 |
Adalsteinsson, E | 1 |
Bell, RL | 1 |
Nakagawasai, O | 3 |
Murata, A | 1 |
Arai, Y | 2 |
Ohba, A | 1 |
Wakui, K | 1 |
Mitazaki, S | 1 |
Niijima, F | 3 |
Tan-No, K | 3 |
Tadano, T | 3 |
Balk, E | 1 |
Chung, M | 1 |
Raman, G | 1 |
Tatsioni, A | 1 |
Chew, P | 1 |
Ip, S | 1 |
DeVine, D | 1 |
Lau, J | 1 |
Batifoulier, F | 1 |
Verny, MA | 1 |
Besson, C | 1 |
Chanliaud, E | 1 |
Rémésy, C | 1 |
Demigné, C | 1 |
Rajaraman, G | 1 |
Wang, G | 1 |
Smith, HJ | 1 |
Gong, Y | 1 |
Burczynski, FJ | 1 |
Petrovic, MM | 1 |
Scepanovic, L | 1 |
Rosic, G | 1 |
Mitrovic, DM | 1 |
Yonekawa, M | 1 |
Kanaya, T | 1 |
Sera, H | 1 |
Sarai, K | 1 |
Aikawa, H | 1 |
Watanabe, IS | 1 |
Furuse, T | 1 |
Iwasaki, Y | 1 |
Satoyoshi, E | 1 |
Sumi, T | 1 |
Moroji, T | 1 |
Hakim, AM | 1 |
Pappius, HM | 1 |
Chan, AW | 1 |
Schanley, DL | 1 |
Leong, FW | 1 |
Gunnison, AF | 1 |
Dulak, L | 1 |
Chiang, G | 1 |
Zaccardi, J | 1 |
Farruggella, TJ | 1 |
Shah, RM | 1 |
Izadnegahdar, MF | 1 |
Hehn, BM | 1 |
Young, AV | 1 |
Bienengräber, V | 1 |
Fanghänel, J | 1 |
Malek, FA | 1 |
Kundt, G | 1 |
Hozumi, S | 2 |
Taniguchi, R | 2 |
Asao, T | 1 |
Kinemuchi, H | 1 |
Yasuhara, H | 1 |
Kisara, K | 2 |
Esashi, A | 1 |
França, DS | 1 |
Souza, AL | 1 |
Almeida, KR | 1 |
Dolabella, SS | 1 |
Martinelli, C | 1 |
Coelho, MM | 1 |
Mair, RG | 1 |
Otto, TA | 1 |
Knoth, RL | 1 |
Rabchenuk, SA | 1 |
Langlais, PJ | 1 |
Pokotilenko, GM | 1 |
Poliachenko, LIu | 1 |
Zenk, W | 1 |
Wagner, T | 1 |
Möckel, M | 1 |
Butterworth, RF | 3 |
Giguère, JF | 2 |
Besnard, AM | 2 |
Miyoshi, T | 1 |
Goto, I | 1 |
Manocha, SL | 1 |
Olkowski, ZL | 1 |
Börcsök, E | 1 |
Földi, K | 1 |
Wittlinger, G | 1 |
Földi, M | 1 |
Heggtveit, HA | 1 |
Grice, HC | 1 |
Wiberg, GS | 1 |
Trial | Phase | Enrollment | Study Type | Start Date | Status | ||
---|---|---|---|---|---|---|---|
A Phase 1, Double-blind, Placebo-controlled, Randomized, Two-Part, Ascending Dose-escalation Study to Evaluate the Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of Rejuveinix (RJX) in Healthy Participants[NCT03680105] | Phase 1 | 76 participants (Actual) | Interventional | 2018-08-24 | Completed | ||
Adjuvant Effects of Vitamin A and Vitamin D Supplementation on Treatment of Children With ADHD:A Randomized, Double Blind, Placebo-controlled, Multicentric Trial.[NCT04284059] | Phase 4 | 504 participants (Anticipated) | Interventional | 2021-02-25 | Recruiting | ||
Effect of Combined Vitamin C, Stress-dose Steroids, and Thiamine on Cerebral Autoregulation and Functional Outcomes of Patients With Septic Shock[NCT03649633] | Phase 1/Phase 2 | 100 participants (Anticipated) | Interventional | 2018-09-06 | Recruiting | ||
[information is prepared from clinicaltrials.gov, extracted Sep-2024] |
Number of participants with abnormal and clinically significant findings based on ECG. (NCT03680105)
Timeframe: Up to Day 2 for Part 1 and Up to Day 8 for Part 2
Intervention | Participants (Count of Participants) |
---|---|
Part 1; Placebo | 0 |
Part 1; Cohort 1; RJX | 0 |
Part 1; Cohort 2; RJX | 0 |
Part 1; Cohort 3; RJX | 0 |
Part 1; Cohort 4; RJX | 0 |
Part 1; Cohort 5; RJX | 0 |
Part 1; Cohort 6; RJX | 0 |
Part 2; Placebo | 0 |
Part 2; Cohort 1; RJX | 0 |
Part 2; Cohort 2; RJX | 0 |
Part 2; Cohort 3; RJX | 0 |
Number of participants with clinically significant values and actual changes from baseline of continuous neurological assessments. (NCT03680105)
Timeframe: Up to Day 5 for Part 1 and Up to Day 12 for Part 2
Intervention | Participants (Count of Participants) |
---|---|
Part 1; Placebo | 0 |
Part 1; Cohort 1; RJX | 0 |
Part 1; Cohort 2; RJX | 0 |
Part 1; Cohort 3; RJX | 0 |
Part 1; Cohort 4; RJX | 0 |
Part 1; Cohort 5; RJX | 0 |
Part 1; Cohort 6; RJX | 0 |
Part 2; Placebo | 0 |
Part 2; Cohort 1; RJX | 0 |
Part 2; Cohort 2; RJX | 1 |
Part 2; Cohort 3; RJX | 0 |
Number of participants with indicated AEs receiving RJX as assessed by CTCAE v4 03 (NCT03680105)
Timeframe: Up to Day 5 for Part 1 and Up to Day 12 for Part 2
Intervention | Participants (Count of Participants) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mild TEAE72191553 | Mild TEAE72191554 | Mild TEAE72191555 | Mild TEAE72191556 | Mild TEAE72191557 | Mild TEAE72191558 | Mild TEAE72191559 | Mild TEAE72191560 | Mild TEAE72191562 | Mild TEAE72191563 | Mild TEAE72191561 | Moderate TEAE72191553 | Moderate TEAE72191554 | Moderate TEAE72191555 | Moderate TEAE72191556 | Moderate TEAE72191557 | Moderate TEAE72191558 | Moderate TEAE72191559 | Moderate TEAE72191560 | Moderate TEAE72191561 | Moderate TEAE72191562 | Moderate TEAE72191563 | Severe TEAE72191553 | Severe TEAE72191554 | Severe TEAE72191555 | Severe TEAE72191556 | Severe TEAE72191557 | Severe TEAE72191558 | Severe TEAE72191559 | Severe TEAE72191560 | Severe TEAE72191561 | Severe TEAE72191562 | Severe TEAE72191563 | Related TEAE72191553 | Related TEAE72191554 | Related TEAE72191555 | Related TEAE72191556 | Related TEAE72191558 | Related TEAE72191559 | Related TEAE72191560 | Related TEAE72191561 | Related TEAE72191562 | Related TEAE72191563 | Related TEAE72191557 | |||||||||||||||||||||||||||||||||||||||||||||
Without TEAE | With TEAE | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Placebo | 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 1; RJX | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 2; RJX | 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 3; RJX | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 4; RJX | 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 5; RJX | 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 6; RJX | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 2; Placebo | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 2; Cohort 1; RJX | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 2; Cohort 2; RJX | 3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 2; Cohort 3; RJX | 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Placebo | 11 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 1; RJX | 5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 2; RJX | 4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 3; RJX | 6 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 5; RJX | 4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 6; RJX | 9 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 2; Placebo | 5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 2; Cohort 1; RJX | 5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 2; Cohort 3; RJX | 4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Placebo | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 1; RJX | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 4; RJX | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 5; RJX | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 2; Cohort 1; RJX | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 2; Cohort 2; RJX | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 2; Cohort 3; RJX | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Placebo | 13 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 1; RJX | 6 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 2; RJX | 6 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 4; RJX | 5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 5; RJX | 5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 2; Cohort 1; RJX | 6 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 2; Cohort 2; RJX | 6 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 2; Cohort 3; RJX | 5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 2; RJX | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 4; RJX | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 5; RJX | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 2; Placebo | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 4; RJX | 6 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 5; RJX | 6 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 2; Placebo | 6 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 2; RJX | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 2; Cohort 2; RJX | 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 2; Cohort 3; RJX | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 2; RJX | 5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 1; Cohort 4; RJX | 4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 2; Cohort 2; RJX | 4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part 2; Cohort 3; RJX | 6 |
4 reviews available for thiamine and Disease Models, Animal
Article | Year |
---|---|
Alcoholism and nutrition: a review of vitamin supplementation and treatment.
Topics: Alcoholism; Animals; Avitaminosis; Dietary Supplements; Disease Models, Animal; Humans; Niacin; Nutr | 2020 |
Use of Vitamins and Dietary Supplements by Patients With Multiple Sclerosis: A Review.
Topics: Acetylcarnitine; Animals; Ascorbic Acid; Biotin; Caffeine; Creatine; Curcumin; Dietary Supplements; | 2018 |
B vitamins and berries and age-related neurodegenerative disorders.
Topics: Aging; Alzheimer Disease; Animals; Blueberry Plants; Cognition; Disease Models, Animal; Folic Acid; | 2006 |
Cerebral thiamine-dependent enzyme changes in experimental Wernicke's encephalopathy.
Topics: Animals; Disease Models, Animal; Pyridinium Compounds; Pyrithiamine; Thiamine; Thiamine Deficiency; | 1986 |
72 other studies available for thiamine and Disease Models, Animal
Article | Year |
---|---|
Thiamine deficiency and recovery: impact of recurrent episodes and beneficial effect of treatment with Trolox and dimethyl sulfoxide.
Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Behavior, Animal; Chromans; Dimethyl Sulfoxide; Dis | 2021 |
Role of pyruvate in maintaining cell viability and energy production under high-glucose conditions.
Topics: Adenosine Triphosphate; Animals; Cell Line; Cell Survival; Citric Acid Cycle; Diabetic Nephropathies | 2021 |
B Vitamins Supplementation Can Improve Cognitive Functions and May Relate to the Enhancement of Transketolase Activity in A Rat Model of Cognitive Impairment Associated with High-fat Diets.
Topics: Animals; Cognitive Dysfunction; Diet, High-Fat; Dietary Supplements; Disease Models, Animal; Folic A | 2021 |
Machine learning and murine models explain failures of clinical sepsis trials.
Topics: Animals; Ascorbic Acid; Biomarkers; Cecum; Cytokines; Disease Models, Animal; Hydrocortisone; Ligati | 2022 |
Benfotiamine protects against hypothalamic dysfunction in a STZ-induced model of neurodegeneration in rats.
Topics: Alzheimer Disease; Animals; Disease Models, Animal; Rats; Streptozocin; Thiamine | 2022 |
Evaluation of the potential of Rejuveinix plus dexamethasone against sepsis.
Topics: Animals; Anti-Inflammatory Agents; Ascorbic Acid; COVID-19 Drug Treatment; Dexamethasone; Disease Mo | 2022 |
Gut-Brain Axis: Insights from Hippocampal Neurogenesis and Brain Tumor Development in a Mouse Model of Experimental Colitis Induced by Dextran Sodium Sulfate.
Topics: Amino Acids; Animals; Brain Neoplasms; Brain-Gut Axis; Carcinogenesis; Colitis; Colon; Cytokines; De | 2022 |
Huntington disease oligodendrocyte maturation deficits revealed by single-nucleus RNAseq are rescued by thiamine-biotin supplementation.
Topics: Animals; Biotin; Dietary Supplements; Disease Models, Animal; Humans; Huntington Disease; Mice; Mice | 2022 |
Neuroprotective effects of vitamin B1 on memory impairment and suppression of pro-inflammatory cytokines in traumatic brain injury.
Topics: Animals; Brain Injuries, Traumatic; Cytokines; Disease Models, Animal; Inflammation; Memory Disorder | 2023 |
Vitamin B1 and B12 mitigates neuron apoptosis in cerebral palsy by augmenting BDNF expression through MALAT1/miR-1 axis.
Topics: Animals; Apoptosis; Brain-Derived Neurotrophic Factor; Cell Line, Tumor; Cerebral Palsy; Disease Mod | 2019 |
Beneficial effects of benfotiamine, a NADPH oxidase inhibitor, in isoproterenol-induced myocardial infarction in rats.
Topics: Animals; Biomarkers; Cardiotoxins; Disease Models, Animal; Electrocardiography; Enzyme Inhibitors; H | 2020 |
The modulator action of thiamine against pentylenetetrazole-induced seizures, apoptosis, nitric oxide, and oxidative stress in rats and SH-SY5Y neuronal cell line.
Topics: Animals; Anticonvulsants; Antioxidants; Apoptosis; Brain; Caspase 3; Cell Line; Disease Models, Anim | 2021 |
Anti-convulsive Effect of Thiamine and Melatonin Combination in Mice: Involvement of Oxidative Stress.
Topics: Animals; Anticonvulsants; Disease Models, Animal; Male; Melatonin; Mice; Oxidative Stress; Pentylene | 2021 |
Comparative effects of EtOH consumption and thiamine deficiency on cognitive impairment, oxidative damage, and β-amyloid peptide overproduction in the brain.
Topics: Alcohol Drinking; Alcoholism; Amyloid beta-Peptides; Animals; Brain; Cognition Disorders; Diet Thera | 2017 |
Thiamine and benfotiamine prevent stress-induced suppression of hippocampal neurogenesis in mice exposed to predation without affecting brain thiamine diphosphate levels.
Topics: Animals; Dentate Gyrus; Disease Models, Animal; Glycogen Synthase Kinase 3; Hippocampus; Male; Mice, | 2017 |
Anticonvulsant effects of thiamine on pentylenetetrazole-induced seizure in mice.
Topics: Animals; Anticonvulsants; Diazepam; Disease Models, Animal; Dose-Response Relationship, Drug; Epilep | 2019 |
Elucidating the functions of brain GSK3α: Possible synergy with GSK3β upregulation and reversal by antidepressant treatment in a mouse model of depressive-like behaviour.
Topics: Animals; Antidepressive Agents; Brain; Depression; Disease Models, Animal; Glycogen Synthase Kinase | 2017 |
Functional interrogation of Plasmodium genus metabolism identifies species- and stage-specific differences in nutrient essentiality and drug targeting.
Topics: Animals; Choline; Culicidae; Disease Models, Animal; Food; Gene Deletion; Gene Expression Regulation | 2018 |
The effect of thiamine and its metabolites on peripheral neuropathic pain induced by cisplatin in rats.
Topics: Analgesics; Animals; Cisplatin; Disease Models, Animal; Interleukin-1beta; Male; Malondialdehyde; Ne | 2018 |
Thiamine diphosphate reduction strongly correlates with brain glucose hypometabolism in Alzheimer's disease, whereas amyloid deposition does not.
Topics: Age Factors; Aged; Aged, 80 and over; Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein | 2018 |
Modulation of hepatic gene expression profiles by vitamin B
Topics: Acute Disease; Animals; Dietary Supplements; Disease Models, Animal; Energy Metabolism; Gene Express | 2018 |
Benfotiamine treatment activates the Nrf2/ARE pathway and is neuroprotective in a transgenic mouse model of tauopathy.
Topics: Amyloid beta-Peptides; Animals; Antioxidant Response Elements; Brain; Disease Models, Animal; Humans | 2018 |
New molecular aspects in the mechanism of oromaxillofacial cleft prevention by B-vitamins.
Topics: Animals; Biological Transport; Cleft Lip; Cleft Palate; Disease Models, Animal; Electrophoresis, Aga | 2018 |
Vitamin B combination reduces fluconazole toxicity in Wistar rats.
Topics: Alanine Transaminase; Animals; Aspartate Aminotransferases; Chemical and Drug Induced Liver Injury; | 2019 |
Hydrocortisone, Ascorbic Acid, and Thiamine (HAT) Therapy Decreases Oxidative Stress, Improves Cardiovascular Function, and Improves Survival in Murine Sepsis.
Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Ascorbic Acid; Blood Pressure; Disease Models, Anim | 2020 |
The Effects of Thiamine Hydrochloride on Cardiac Function, Redox Status and Morphometric Alterations in Doxorubicin-Treated Rats.
Topics: Animals; Antioxidants; Cardiotoxicity; Coronary Circulation; Disease Models, Animal; Doxorubicin; Fe | 2020 |
Lower concentrations of B-vitamin subgroups in the serum and amniotic fluid correlate to cleft lip and palate appearance in the offspring of A/WySn mice.
Topics: Adenine; Alkaline Phosphatase; Amniotic Fluid; Animals; Chromatography, High Pressure Liquid; Cleft | 2013 |
Thiamine deficiency induces massive cell death in the olfactory bulbs of mice.
Topics: Animals; Antimetabolites; Calcium-Binding Proteins; Caspase 3; Cell Death; Disease Models, Animal; D | 2013 |
Effects of thiamine and thiamine pyrophosphate on epileptic episode model established with caffeine in rats.
Topics: Animals; Brain; Caffeine; Central Nervous System Stimulants; Disease Models, Animal; Dose-Response R | 2014 |
Associations between in vivo neuroimaging and postmortem brain cytokine markers in a rodent model of Wernicke's encephalopathy.
Topics: Analysis of Variance; Animals; Aspartic Acid; Brain; Creatine; Cytokines; Disease Models, Animal; Li | 2014 |
PKR downregulation prevents neurodegeneration and β-amyloid production in a thiamine-deficient model.
Topics: Amyloid; Amyloid beta-Peptides; Animals; Brain; Caspase 3; Disease Models, Animal; Down-Regulation; | 2015 |
Impact of exercise and vitamin B1 intake on hippocampal brain-derived neurotrophic factor and spatial memory performance in a rat model of stress.
Topics: Acetylcholine; Animals; Anxiety; Brain-Derived Neurotrophic Factor; Disease Models, Animal; Hippocam | 2015 |
Sex distribution is a factor in teratogenically induced clefts and in the anti-teratogenic effect of thiamine in mice, but not in genetically determined cleft appearance.
Topics: Animals; Cleft Lip; Cleft Palate; Disease Models, Animal; Female; Humans; Male; Mice; Mice, Inbred S | 2016 |
Inhibition of Intestinal Thiamin Transport in Rat Model of Sepsis.
Topics: Animals; Disease Models, Animal; Gastrointestinal Absorption; Intestinal Mucosa; Membrane Transport | 2016 |
Thiamine as a neuroprotective agent after cardiac arrest.
Topics: Animals; Biomarkers; Cardiopulmonary Resuscitation; Case-Control Studies; Cerebral Cortex; Disease M | 2016 |
The influence of thiamin on the efficacy of pregabalin in rats with spinal nerve ligation (SNL)-induced neuropathic pain.
Topics: Analgesics; Analysis of Variance; Animals; Disease Models, Animal; Drug Administration Schedule; Dru | 2016 |
Protective effect of treatment with thiamine or benfotiamine on liver oxidative damage in rat model of acute ethanol intoxication.
Topics: Alcoholic Intoxication; Animals; Disease Models, Animal; Liver Diseases; Male; Oxidative Stress; Rat | 2016 |
Thiamine and benfotiamine improve cognition and ameliorate GSK-3β-associated stress-induced behaviours in mice.
Topics: Animals; Avoidance Learning; Brain; Cognition Disorders; Conditioning, Psychological; Disease Models | 2017 |
Treatment of rats with the JAK-2 inhibitor fedratinib does not lead to experimental Wernicke's encephalopathy.
Topics: Animals; Disease Models, Animal; Janus Kinase 2; Male; Pyrrolidines; Rats; Rats, Sprague-Dawley; Sul | 2017 |
Thiamine deficiency increases β-secretase activity and accumulation of β-amyloid peptides.
Topics: Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Amyloid Precursor Protein Secretases; Analysi | 2011 |
Ethanol promotes thiamine deficiency-induced neuronal death: involvement of double-stranded RNA-activated protein kinase.
Topics: Alcoholism; Amprolium; Animals; Cell Death; Cells, Cultured; Central Nervous System Depressants; Coc | 2009 |
Vitamin B1 analog benfotiamine prevents diabetes-induced diastolic dysfunction and heart failure through Akt/Pim-1-mediated survival pathway.
Topics: Analysis of Variance; Animals; Apoptosis; Blood Flow Velocity; Blotting, Western; Carrier Proteins; | 2010 |
Increased protein damage in renal glomeruli, retina, nerve, plasma and urine and its prevention by thiamine and benfotiamine therapy in a rat model of diabetes.
Topics: Adjuvants, Immunologic; Animals; Diabetes Mellitus, Experimental; Disease Models, Animal; Kidney Glo | 2010 |
Thiamine supplementation attenuated hepatocellular carcinoma in the Atp7b mouse model of Wilson's disease.
Topics: Adenosine Triphosphatases; Animals; Carcinoma, Hepatocellular; Cation Transport Proteins; Cell Death | 2011 |
Acute administration of Zn, Mg, and thiamine improves postpartum depression conditions in mice.
Topics: Animals; Anxiety; Behavior, Animal; Depression; Depression, Postpartum; Depressive Disorder, Major; | 2012 |
Reversal of thiamine deficiency-induced neurodegeneration.
Topics: Animals; Brain; Cell Death; Disease Models, Animal; Fluoresceins; Fluorescent Dyes; Heme Oxygenase ( | 2003 |
Age-related vulnerability to diencephalic amnesia produced by thiamine deficiency: the role of time of insult.
Topics: Aging; Amnesia; Animals; Antimetabolites; Behavior, Animal; Body Weight; Brain Mapping; Cell Count; | 2004 |
Benfotiamine alleviates diabetes-induced cerebral oxidative damage independent of advanced glycation end-product, tissue factor and TNF-alpha.
Topics: Adjuvants, Immunologic; Analysis of Variance; Animals; Blood Glucose; Diabetes Mellitus, Experimenta | 2006 |
Development and resolution of brain lesions caused by pyrithiamine- and dietary-induced thiamine deficiency and alcohol exposure in the alcohol-preferring rat: a longitudinal magnetic resonance imaging and spectroscopy study.
Topics: Alcohol-Induced Disorders, Nervous System; Alcoholism; Animals; Antimetabolites; Biomarkers; Brain; | 2007 |
Enhanced head-twitch response to 5-HT-related agonists in thiamine-deficient mice.
Topics: Amphetamines; Animals; Brain; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Toleran | 2007 |
Restoration of thiamine status with white or whole wheat bread in a thiamine-depleted rat model.
Topics: Animals; Body Weight; Bread; Cerebellum; Diet; Disease Models, Animal; Glucose; Glutamic Acid; Kidne | 2007 |
Effect of diltiazem isomers and thiamine on piglet liver microsomal peroxidation using dichlorofluorescein.
Topics: Animals; Antioxidants; Calcium Channel Blockers; Diltiazem; Disease Models, Animal; Dose-Response Re | 2007 |
Properties of thiamine transport in isolated perfused hearts of chronically alcoholic guinea pigs.
Topics: Alcoholism; Animals; Biological Transport, Active; Carbon Radioisotopes; Carbonyl Cyanide m-Chloroph | 2008 |
[The effects of chronic methamphetamine and single haloperidol injections on thiamine and its phosphate ester levels in the rat brain].
Topics: Animals; Brain; Disease Models, Animal; Haloperidol; Humans; Male; Methamphetamine; Rats; Rats, Inbr | 1984 |
Low energy levels in thiamine-deficient encephalopathy.
Topics: Animals; Behavior, Animal; Brain; Brain Diseases; Disease Models, Animal; Energy Metabolism; Male; M | 1984 |
Sequence of metabolic, clinical, and histological events in experimental thiamine deficiency.
Topics: Animals; Brain; Cerebrovascular Circulation; Disease Models, Animal; Glucose; Male; Rats; Rats, Inbr | 1983 |
The adequacy of thiamine in liquid diets used in animal models of alcoholism.
Topics: Alcoholism; Animals; Brain; Disease Models, Animal; Ethanol; Food, Formulated; Humans; Male; Nutriti | 1980 |
A sulphite-oxidase-deficient rat model: subchronic toxicology.
Topics: Adenocarcinoma; Animals; Body Weight; Diarrhea; Disease Models, Animal; Drinking; Eating; Female; Gl | 1981 |
In vivo/in vitro studies on the effects of cyclophosphamide on growth and differentiation of hamster palate.
Topics: Animals; Collagen; Cricetinae; Cyclophosphamide; Disease Models, Animal; Drug Therapy, Combination; | 1996 |
Application of thiamine in preventing malformations, specifically cleft alveolus and palate, during the intrauterine development of rats.
Topics: Abnormalities, Drug-Induced; Alveolar Process; Animals; Body Weight; Bone and Bones; Cleft Palate; C | 1997 |
Antinociceptive effect following dietary-induced thiamine deficiency in mice: involvement of substance P and somatostatin.
Topics: Analgesia; Animals; Avoidance Learning; Behavior, Animal; Diet; Disease Models, Animal; Hindlimb; In | 2001 |
Characteristics of depressive behavior induced by feeding thiamine-deficient diet in mice.
Topics: Animals; Antidepressive Agents, Tricyclic; Behavior, Animal; Body Weight; Depression; Diet; Disease | 2001 |
B vitamins induce an antinociceptive effect in the acetic acid and formaldehyde models of nociception in mice.
Topics: Acetic Acid; Animals; Constriction; Disease Models, Animal; Dose-Response Relationship, Drug; Edema; | 2001 |
Analysis of aversively conditioned learning and memory in rats recovered from pyrithiamine-induced thiamine deficiency.
Topics: Alcohol Amnestic Disorder; Analysis of Variance; Animals; Avoidance Learning; Discrimination Learnin | 1991 |
[The vitamin B1 and C content in the tissues of animals with thyrotoxicosis].
Topics: Animals; Ascorbic Acid; Disease Models, Animal; Liver; Rats; Thiamine; Thyrotoxicosis; Thyroxine; Ti | 1989 |
[Teratogen-modified palatogenesis in the Uje: WIST rat. 2. The effect of thiamine on the incidence of cheilognathopalatoschisis].
Topics: Animals; Cleft Lip; Cleft Palate; Disease Models, Animal; Female; Glycine; Maxilla; Palate; Pregnanc | 1987 |
Activities of thiamine-dependent enzymes in two experimental models of thiamine-deficiency encephalopathy. 2. alpha-Ketoglutarate dehydrogenase.
Topics: Animals; Brain; Diet; Disease Models, Animal; Ketoglutarate Dehydrogenase Complex; Ketone Oxidoreduc | 1986 |
Activities of thiamine-dependent enzymes in two experimental models of thiamine-deficiency encephalopathy: 1. The pyruvate dehydrogenase complex.
Topics: Animals; Brain Diseases, Metabolic; Brain Stem; Disease Models, Animal; Male; Pyrithiamine; Pyruvate | 1985 |
Serial in vivo determinations of nerve conduction velocity in rat tails. Physiological and pathological changes.
Topics: Animals; Body Temperature; Diabetes Mellitus, Experimental; Diabetic Neuropathies; Disease Models, A | 1973 |
Experimental protein malnutrition in primates--cytochemistry of the nervous system.
Topics: Acetylcholinesterase; Acid Phosphatase; Adenosine Triphosphatases; Animals; Central Nervous System; | 1973 |
[Treatment of acute experimental lymphostatic edema with vitamins, with vitamin-like natural substances and with massage].
Topics: Animals; Ascorbic Acid; Coumarins; Disease Models, Animal; Ligation; Lymphatic Diseases; Male; Massa | 1971 |
Cobalt cardiomyopathy. Experimental basis for the human lesion.
Topics: Animals; Beer; Cardiomyopathies; Cobalt; Disease Models, Animal; Electrocardiography; Fatty Acids; H | 1970 |