thermozymocidin has been researched along with Retinitis-Pigmentosa* in 3 studies
3 other study(ies) available for thermozymocidin and Retinitis-Pigmentosa
Article | Year |
---|---|
Novel ophthalmic formulation of myriocin: implications in retinitis pigmentosa.
Myriocin is an antibiotic derived from Mycelia sterilia, and is a potent inhibitor of serine palmitoyltransferase, the enzyme involved in the first step of sphingosine synthesis. Myriocin, inhibiting ceramide synthesis, has a great potential for treatment of diseases characterized by high ceramide levels in affected tissues, such as retinitis pigmentosa (RP). Drug delivery to the retina is a challenging task, which is generally by-passed through intravitreal injection, that represents a risky invasive procedure. We, therefore, developed and characterized an ophthalmic topical nanotechnological formulation based on a nanostructured lipid carrier (NLC) and containing myriocin. The ocular distribution of myriocin in the back of the eye was assessed both in rabbits and mice using LC-MS/MS. Moreover, rabbit retinal sphingolipid and ceramides levels, after myriocin-NLC (Myr-NLC) eye drops treatment, were assessed. The results demonstrated that Myr-NLC formulation is well tolerated and provided effective levels of myriocin in the back of the eye both in rabbits and mice. We found that Myr-NLC eye drops treatment was able to significantly decrease retinal sphingolipid levels. In conclusion, these data suggest that the Myr-NLC ophthalmic formulation is suitable for pharmaceutical development and warrants further clinical evaluation of this eye drops for the treatment of RP. Topics: Animals; Ceramides; Chemistry, Pharmaceutical; Drug Carriers; Drug Delivery Systems; Fatty Acids, Monounsaturated; Lipids; Mice; Nanostructures; Ophthalmic Solutions; Rabbits; Retina; Retinitis Pigmentosa; Serine C-Palmitoyltransferase; Sphingolipids | 2019 |
Cone survival and preservation of visual acuity in an animal model of retinal degeneration.
The prevention of cone loss during retinal degeneration is a major goal of most therapeutic strategies in retinal degenerative diseases. An intriguing issue in the current research in this field is to understand why a genetic mutation that affects rods eventually leads to cone death. The main objective of the present study was to investigate to what extent rescuing rods from degeneration affects the survival of cones and prevents functional impairment of the visual performance. To this purpose, we compared rod and cone viabilities by both ex vivo and in vivo determinations in the rd10 mutant mouse, a validated model of human retinitis pigmentosa. The ex vivo experiments included morphological and biochemical tests, whereas in vivo studies compared the rod-mediated scotopic with the cone-mediated photopic electroretinogram. We also determined the overall visual performance by behaviorally testing the visual acuity (VA). The electroretinogram measurements showed that the kinetics of the photopic response in rd10 mice was slowed down with respect to the age-paired wild-type at a very early stage of the disease, when rods were still present and responsive. We then tested cone viability and function under a pharmacological scheme previously shown to prolong rod survival. The treatment consisted of eye drop administration of myriocin, an inhibitor of the biosynthesis of ceramide, a powerful proapoptotic messenger. The results of biochemical, morphological and functional assays converged to show that, in treated rd10 mice cone photoreceptors, the inner retina and overall visual performance were preserved well after rod death. Topics: Animals; Apoptosis; Cell Survival; Disease Models, Animal; Enzyme Inhibitors; Fatty Acids, Monounsaturated; Mice; Mice, Inbred C57BL; Retinal Cone Photoreceptor Cells; Retinal Rod Photoreceptor Cells; Retinitis Pigmentosa; Visual Acuity | 2013 |
Inhibition of ceramide biosynthesis preserves photoreceptor structure and function in a mouse model of retinitis pigmentosa.
Retinitis pigmentosa (RP) is a genetic disease causing progressive apoptotic death of photoreceptors and, ultimately, incurable blindness. Using the retinal degeneration 10 (rd10) mouse model of RP, we investigated the role of ceramide, a proapoptotic sphingolipid, in retinal degeneration. We also tested the possibility that photoreceptor loss can be slowed or blocked by interfering with the ceramide signaling pathway of apoptosis in vivo. Retinal ceramide levels increased in rd10 mice during the period of maximum photoreceptor death. Single intraocular injections of myriocin, a powerful inhibitor of serine palmitoyl-CoA transferase, the rate-limiting enzyme of ceramide biosynthesis, lowered retinal ceramide levels to normal values and rescued photoreceptors from apoptotic death. Noninvasive treatment was achieved using eye drops consisting of a suspension of solid lipid nanoparticles loaded with myriocin. Short-term noninvasive treatment lowered retinal ceramide in a manner similar to intraocular injections, indicating that nanoparticles functioned as a vector permitting transcorneal drug administration. Prolonged treatment (10-20 d) with solid lipid nanoparticles increased photoreceptor survival, preserved photoreceptor morphology, and extended the ability of the retina to respond to light as assessed by electroretinography. In conclusion, pharmacological targeting of ceramide biosynthesis slowed the progression of RP in a mouse model, and therefore may represent a therapeutic approach to treating this disease in humans. Transcorneal administration of drugs carried in solid lipid nanoparticles, as experimented in this study, may facilitate continuous, noninvasive treatment of patients with RP and other retinal pathologies. Topics: Animals; Ceramides; Disease Models, Animal; Enzyme Inhibitors; Fatty Acids, Monounsaturated; Humans; Mice; Mice, Inbred C57BL; Mice, Mutant Strains; Photoreceptor Cells, Vertebrate; Retinitis Pigmentosa; Serine C-Palmitoyltransferase | 2010 |