theanine and Urinary-Bladder--Overactive

theanine has been researched along with Urinary-Bladder--Overactive* in 1 studies

Other Studies

1 other study(ies) available for theanine and Urinary-Bladder--Overactive

ArticleYear
l-Theanine inhibits proinflammatory PKC/ERK/ICAM-1/IL-33 signaling, apoptosis, and autophagy formation in substance P-induced hyperactive bladder in rats.
    Neurourology and urodynamics, 2017, Volume: 36, Issue:2

    Upregulation of substance P (SP) and neurokinin-1 receptor (NK1R) activation induces pro-inflammatory bladder hyperactivity through the PKC/ERK/NF-κB/ICAM-1/IL-33 signaling pathways to increase the leukocyte infiltration and adhesion leading to reactive oxygen species (ROS) production, autophagy, and apoptosis. l-Theanine is a unique non-protein-forming amino acid present in tea (Camellia sinensis [L.] O. Kuntze) with its antioxidant, anti-inflammatory, and relaxation effects to improve cognition, mood, gastric ulcer injury, and cerebral ischemia/reperfusion injury, and posttraumatic stress disorder. We explored the protective effect of l-theanine on SP-induced bladder hyperactivity.. In urethane-anesthetized female Wistar rats, we explored the transcystometrogram, pelvic nerve activity, proinflammatory PKC/ERK/NF-κB/ICAM-1/IL-33 signaling, apoptosis-related Caspase 3/poly-(ADP-ribose)-polymerase (PARP), and autophagy-mediated LC3 II expression by Western blot, electrophoretic-mobility shift assay and immunohistochemistry, bladder ROS amount by a ultrasensitive chemiluminescence method, and possible ROS sources from the different leukocytes by specific stains in SP-evoked hyperactive bladder.. In conclusion, l-theanine through antioxidant and anti-inflammatory actions ameliorates SP-induced bladder hyperactivity via the inhibition of proinflammatory PKC/ERK/NF-κB/ICAM-1/IL-33 signaling, oxidative stress, bladder nerve hyperactivity, apoptosis, and autophagy. Neurourol. Urodynam. 36:297-307, 2017. © 2016 Wiley Periodicals, Inc.

    Topics: Animals; Apoptosis; Autophagy; Extracellular Signal-Regulated MAP Kinases; Female; Glutamates; Intercellular Adhesion Molecule-1; Interleukin-33; Oxidative Stress; Protein Kinase C; Rats; Rats, Wistar; Reactive Oxygen Species; Signal Transduction; Substance P; Urinary Bladder; Urinary Bladder, Overactive

2017