theanine and Prostatic-Neoplasms

theanine has been researched along with Prostatic-Neoplasms* in 2 studies

Other Studies

2 other study(ies) available for theanine and Prostatic-Neoplasms

ArticleYear
L-theanine suppresses the metastasis of prostate cancer by downregulating MMP9 and Snail.
    The Journal of nutritional biochemistry, 2021, Volume: 89

    Prostate cancer (PCa) is a very prevalent male-specific malignancy; most PCa patients eventually die as a result of metastasis. L-theanine (C7H14N2O3), a nonprotein amino acid derivative from green tea leaves, has been demonstrated to act as an anticarcinogen through proapoptotic and antiproliferative effects. However, the antimetastatic effect of L-theanine in tumor cells and its underlying mechanism are still unclear. Here, we found that L-theanine could suppress invasion, migration, and increase cell-cell adhesion of prostate cancer cells in vitro and in vivo. We also found that L-theanine could inhibit the epithelial-mesenchymal transition process in PCa. Our study revealed that L-theanine could downregulate MMP9, N-cadherin, Vimentin, Snail, and upregulate E-cadherin. Furthermore, L-theanine suppressed the transcription of MMP9 and Snail by significantly inhibiting the ERK/NF-κB signaling pathway and the binding activity of p65 to the promoter regions of MMP9 and Snail. All of these findings suggest that L-theanine has therapeutic potential for metastatic PCa and may be considered a promising candidate for antimetastatic therapy of prostate cancer.

    Topics: Animals; Antineoplastic Agents; Cadherins; Cell Movement; Down-Regulation; Epithelial-Mesenchymal Transition; Glutamates; Humans; Male; Matrix Metalloproteinase 9; Mice; Neoplasm Metastasis; NF-kappa B; PC-3 Cells; Prostatic Neoplasms; Signal Transduction; Snail Family Transcription Factors; Tea; Vimentin

2021
Structure-activity relationships of tea compounds against human cancer cells.
    Journal of agricultural and food chemistry, 2007, Jan-24, Volume: 55, Issue:2

    The content of the biologically active amino acid theanine in 15 commercial black, green, specialty, and herbal tea leaves was determined as the 2,4-dinitrophenyltheanine derivative (DNP-theanine) by a validated HPLC method. To define relative anticarcinogenic potencies of tea compounds and teas, nine green tea catechins, three black tea theaflavins, and theanine as well as aqueous and 80% ethanol/water extracts of the same tea leaves were evaluated for their ability to induce cell death in human cancer and normal cells using a tetrazolium microculture (MTT) assay. Compared to untreated controls, most catechins, theaflavins, theanine, and all tea extracts reduced the numbers of the following human cancer cell lines: breast (MCF-7), colon (HT-29), hepatoma (liver) (HepG2), and prostate (PC-3) as well as normal human liver cells (Chang). The growth of normal human lung (HEL299) cells was not inhibited. The destruction of cancer cells was also observed visually by reverse phase microscopy. Statistical analysis of the data showed that (a) the anticarcinogenic effects of tea compounds and of tea leaf extracts varied widely and were concentration dependent over the ranges from 50 to 400 microg/mL of tea compound and from 50 to 400 microg/g of tea solids; (b) the different cancer cells varied in their susceptibilities to destruction; (c) 80% ethanol/water extracts with higher levels of flavonoids determined by HPLC were in most cases more active than the corresponding water extracts; and (d) flavonoid levels of the teas did not directly correlate with anticarcinogenic activities. The findings extend related observations on the anticarcinogenic potential of tea ingredients and suggest that consumers may benefit more by drinking both green and black teas.

    Topics: Anticarcinogenic Agents; Biflavonoids; Breast Neoplasms; Camellia sinensis; Catechin; Cell Death; Cell Line, Tumor; Glutamates; HT29 Cells; Humans; Liver Neoplasms; Male; Plant Leaves; Prostatic Neoplasms; Stomach Neoplasms; Structure-Activity Relationship; Tea

2007