theanine has been researched along with Liver-Cirrhosis* in 1 studies
1 other study(ies) available for theanine and Liver-Cirrhosis
Article | Year |
---|---|
l-Theanine prevents carbon tetrachloride-induced liver fibrosis via inhibition of nuclear factor κB and down-regulation of transforming growth factor β and connective tissue growth factor.
Here we evaluated the ability of L-theanine in preventing experimental hepatic cirrhosis and investigated the roles of nuclear factor-κB (NF-κB) activation as well as transforming growth factor β (TGF-β) and connective tissue growth factor (CTGF) regulation. Experimental hepatic cirrhosis was established by the administration of carbon tetrachloride (CCl4) to rats (0.4 g/kg, intraperitoneally, three times per week, for 8 weeks), and at the same time, adding L-theanine (8.0 mg/kg) to the drinking water. Rats had ad libitum access to water and food throughout the treatment period. CCl4 treatment promoted NF-κB activation and increased the expression of both TGF-β and CTGF. CCl4 increased the serum activities of alanine aminotransferase and γ-glutamyl transpeptidase and the degree of lipid peroxidation, and it also induced a decrease in the glutathione and glutathione disulfide ratio. L-Theanine prevented increased expression of NF-κB and down-regulated the pro-inflammatory (interleukin (IL)-1β and IL-6) and profibrotic (TGF-β and CTGF) cytokines. Furthermore, the levels of messenger RNA encoding these proteins decreased in agreement with the expression levels. L-Theanine promoted the expression of the anti-inflammatory cytokine IL-10 and the fibrolytic enzyme metalloproteinase-13. Liver hydroxyproline contents and histopathological analysis demonstrated the anti-fibrotic effect of l-theanine. In conclusion, L-theanine prevents CCl4-induced experimental hepatic cirrhosis in rats by blocking the main pro-inflammatory and pro-fibrogenic signals. Topics: Alanine Transaminase; Animals; Antioxidants; Aspartate Aminotransferases; Carbon Tetrachloride Poisoning; Chemical and Drug Induced Liver Injury; Connective Tissue Growth Factor; Cytokines; Down-Regulation; Glutamates; Lipid Peroxidation; Liver Cirrhosis; Male; Matrix Metalloproteinase 13; NF-kappa B; Rats; Rats, Wistar; Transforming Growth Factor beta | 2016 |