theaflavin-3-3--digallate and Carcinoma

theaflavin-3-3--digallate has been researched along with Carcinoma* in 2 studies

Other Studies

2 other study(ies) available for theaflavin-3-3--digallate and Carcinoma

ArticleYear
Theaflavin-3,3'-Digallate Suppresses Human Ovarian Carcinoma OVCAR-3 Cells by Regulating the Checkpoint Kinase 2 and p27 kip1 Pathways.
    Molecules (Basel, Switzerland), 2019, Feb-14, Volume: 24, Issue:4

    Theaflavin-3,3'-digallate (TF3) is a unique polyphenol in black tea. Epidemiological studies have proved that black tea consumption decreases the incidence rate of ovarian cancer. Our former research demonstrated that TF3 inhibited human ovarian cancer cells. Nevertheless, the roles of checkpoint kinase 2 (Chk2) and p27 kip1 (p27) in TF3-mediated inhibition of human ovarian cancer cells have not yet been investigated. In the current study, TF3 enhanced the phosphorylation of Chk2 to modulate the ratio of pro/anti-apoptotic Bcl-2 family proteins to initiate intrinsic apoptosis in a p53-independent manner and increased the expression of death receptors to activate extrinsic apoptosis in OVCAR-3 human ovarian carcinoma cells. In addition, TF3 up-regulated the expression of p27 to induce G0/G1 cell cycle arrest in OVCAR-3 cells. Our study indicated that Chk2 and p27 were vital anticancer targets of TF3 and provided more evidence that TF3 might be a potent agent to be applied as adjuvant treatment for ovarian cancer.

    Topics: Antioxidants; Apoptosis; Biflavonoids; Camellia sinensis; Carcinoma; Catechin; Cell Line, Tumor; Checkpoint Kinase 2; Cyclin-Dependent Kinase Inhibitor p27; Female; Gene Expression Regulation, Neoplastic; Humans; Ovarian Neoplasms; Proto-Oncogene Proteins c-bcl-2; Signal Transduction; Tea; Tumor Suppressor Protein p53

2019
Theaflavin-3, 3'-digallate decreases human ovarian carcinoma OVCAR-3 cell-induced angiogenesis via Akt and Notch-1 pathways, not via MAPK pathways.
    International journal of oncology, 2016, Volume: 48, Issue:1

    Theaflavin-3, 3'-digallate (TF3) is a black tea polyphenol produced from polymerization and oxidization of the green tea ployphenols epicatechin gallate and (-)-epigallocatechin-3-gallate (EGCG) during fermentation of fresh tea leaves. TF3 has been reported to have anticancer properties. However, the effect of TF3 on tumor angiogenesis and the underlying mechanisms are not clear. In the present study, TF3 was verified to inhibit tumor angiogenesis. Compared with EGCG, TF3 was more potent. TF3 inhibited human ovarian carcinoma OVCAR-3 cell-induced angiogenesis in human umbilical vein endothelial cell model and in chick chorioallantoic membrane model. TF3 reduced tumor angiogenesis by downregulating HIF-1α and VEGF. One of the mechanisms was TF3 inactivated Akt/mTOR/p70S6K/4E-BP1 pathway and Akt/c-Myc pathway. Besides, TF3 suppressed the cleavage of Notch-1, subsequently decreased the expression of c-Myc, HIF-1α and VEGF, and finally the impaired cancer cells induced angiogenesis. Nevertheless, TF3 did not have any influence on the MAPK pathways. Taken together, these findings suggest that TF3 might serve as a potential anti-angiogenic agent for cancer treatment.

    Topics: Biflavonoids; Carcinoma; Catechin; Cell Line, Tumor; Female; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Mitogen-Activated Protein Kinase Kinases; Neovascularization, Pathologic; Oncogene Protein v-akt; Ovarian Neoplasms; Proto-Oncogene Proteins c-myc; Receptor, Notch1; Signal Transduction; Vascular Endothelial Growth Factor A

2016