thapsigargin and Neuroblastoma

thapsigargin has been researched along with Neuroblastoma* in 81 studies

Other Studies

81 other study(ies) available for thapsigargin and Neuroblastoma

ArticleYear
Differential impact of imipramine on thapsigargin- and tunicamycin-induced endoplasmic reticulum stress and mitochondrial dysfunction in neuroblastoma SH-SY5Y cells.
    European journal of pharmacology, 2021, Jul-05, Volume: 902

    The aim of our work was to study effect of antidepressant imipramine on both thapsigargin- and tunicamycin-induced ER stress and mitochondrial dysfunction in neuroblastoma SH-SY5Y cells. ER stress in SH-SY5Y cells was induced by either tunicamycin or thapsigargin in the presence or absence of imipramine. Cell viability was tested by the MTT assay. Splicing of XBP1 mRNA was studied by RT-PCR. Finally, expression of Hrd1 and Hsp60 was determined by Western blot analysis. Our findings provide evidence that at high concentrations imipramine potentiates ER stress-induced death of SH-SY5Y cells. The effect of imipramine on ER stress-induced death of SH-SY5Y cells was stronger in combination of imipramine with thapsigargin. In addition, we have found that treatment of SH-SY5Y cells with imipramine in combination of either thapsigargin or tunicamycin is associated with the alteration of ER stress-induced IRE1α-XBP1 signalling. Despite potentiation of ER stress-induced XBP1 splicing, imipramine suppresses both thapsigargin- and tunicamycin-induced expression of Hrd1. Finally, imipramine in combination with thapsigargin, but not tunicamycin, aggravates ER stress-induced mitochondrial dysfunction without significant impact on intracellular mitochondrial content as indicated by the unaltered expression of Hsp60. Our results indicate the possibility that chronic treatment with imipramine might be associated with a higher risk of development and progression of neurodegenerative disorders, in particular those allied with ER stress and mitochondrial dysfunction like Parkinson's and Alzheimer's disease.

    Topics: Cell Death; Cell Line, Tumor; Cell Survival; Endoplasmic Reticulum Stress; Endoribonucleases; Humans; Imipramine; Mitochondria; Neuroblastoma; Neurodegenerative Diseases; Protein Serine-Threonine Kinases; RNA Splicing; Signal Transduction; Thapsigargin; Tunicamycin; Ubiquitin-Protein Ligases; X-Box Binding Protein 1

2021
Modelling human CNS injury with human neural stem cells in 2- and 3-Dimensional cultures.
    Scientific reports, 2020, 04-22, Volume: 10, Issue:1

    The adult human central nervous system (CNS) has very limited regenerative capability, and injury at the cellular and molecular level cannot be studied in vivo. Modelling neural damage in human systems is crucial to identifying species-specific responses to injury and potentially neurotoxic compounds leading to development of more effective neuroprotective agents. Hence we developed human neural stem cell (hNSC) 3-dimensional (3D) cultures and tested their potential for modelling neural insults, including hypoxic-ischaemic and Ca

    Topics: Cell Culture Techniques; Cell Differentiation; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cells, Cultured; Central Nervous System; Embryonic Stem Cells; Gene Expression Regulation, Developmental; Glucose; Humans; Neural Stem Cells; Neuroblastoma; Neurons; Oxygen; Thapsigargin; Trauma, Nervous System

2020
The σ
    Pharmacological reports : PR, 2017, Volume: 69, Issue:3

    The intracellular [Ca. When thapsigargin was used to deplete intracellular Ca. We propose that the σ

    Topics: Analgesics, Opioid; Calcium; Cell Line, Tumor; Fluorescence; HT29 Cells; Humans; Ligands; MCF-7 Cells; Neuroblastoma; Pentazocine; Receptors, sigma; Thapsigargin

2017
Adaptive endoplasmic reticulum stress alters cellular responses to the extracellular milieu.
    Journal of neuroscience research, 2015, Volume: 93, Issue:5

    The ability to respond to perturbations in endoplasmic reticulum (ER) function is a critical property for all cells. In the presence of chronic ER stress, the cell must adapt so that cell survival is favored or the stress may promote apoptosis. In some pathological processes, such as neurodengeneration, persistent ER stress can be tolerated for an extended period, but eventually cell death occurs. It is not known how an adaptive response converts from survival into apoptosis. To gain a better understanding of the role of adaptive ER stress in neurodegeneration, in this study, with a neuronal cell line SH-SY5Y and primary motor neuron-glia cell mixed cultures, we induced adaptive ER stress and modified the extracellular environment with physiologically relevant changes that alone did not activate ER stress. Our data demonstrate that an adaptive ER stress favored neuronal cell survival, but when cells were exposed to additional physiological insults the level of ER stress was increased, followed by activation of the caspase pathway. Our results indicate that an adaptive ER stress response could be converted to apoptosis when the external cellular milieu changed, suggesting that the conversion from prosurvival to proapoptotic pathways can be driven by the external milieu. This conversion was due at least partially to an increased level of ER stress.

    Topics: Adaptation, Biological; Animals; Apoptosis; Caspase 3; Cell Communication; Cells, Cultured; DNA-Binding Proteins; Embryo, Mammalian; Endoplasmic Reticulum Stress; Enzyme Inhibitors; Female; Humans; L-Lactate Dehydrogenase; Mice; Motor Neurons; Neuroblastoma; Neuroglia; Pregnancy; Regulatory Factor X Transcription Factors; Spinal Cord; Thapsigargin; Time Factors; Transcription Factor CHOP; Transcription Factors

2015
Suppression effects of O-demethyldemethoxycurcumin on thapsigargin triggered on endoplasmic reticulum stress in SK-N-SH cells.
    Neurotoxicology, 2015, Volume: 50

    Endoplasmic reticulum (ER) stress is involved in neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Therefore, interventions that attenuate ER stress may contribute to induction in apoptotic cell death. This study aimed to evaluate the potential involvement of O-demethyldemethoxycurcumin, an analog of curcuminoids, on thapsigargin-induced apoptosis in cultured neuroblastoma (SK-N-SH) cells through the ER stress signaling pathway. The results showed that O-demethyldemethoxycurcumin reduced thapsigargin induced cell death in SK-N-SH cells and the release of lactate dehydrogenase (LDH) by decreasing the apoptotic cell death induced by thapsigargin. Consistent with these findings, O-demethyldemethoxycurcumin inhibited the thapsigargin-induced activation of cleavagecaspase-12. Moreover, O-demethyldemethoxycurcumin attenuated the intracellular Ca(2+) level and the expression of the calpain protein. O-demethyldemethoxycurcumin also downregulated the expression of ER stress signaling proteins, including the phosphorylation of PKR-like endoplasmic reticulum kinase (p-PERK), the phosphorylation of inositol-requiring enzyme 1 (p-IRE1), activating transcription factor 6 (ATF6), binding immunoglobulin protein (BiP) and C/EBP homologous protein (CHOP). Our findings suggest that O-demethyldemethoxycurcumin could protect against thapsigargin-induced ER stress in SK-N-SH cells.

    Topics: Activating Transcription Factor 6; Annexin A5; Apoptosis; Calcium; Calpain; Cell Line, Tumor; Cell Survival; Curcumin; Diarylheptanoids; Dose-Response Relationship, Drug; eIF-2 Kinase; Endoplasmic Reticulum Chaperone BiP; Endoplasmic Reticulum Stress; Enzyme Inhibitors; Extracellular Fluid; Gene Expression Regulation, Neoplastic; Heat-Shock Proteins; Humans; L-Lactate Dehydrogenase; Neuroblastoma; Thapsigargin; Time Factors; Transcription Factor CHOP

2015
Spongionella Secondary Metabolites Regulate Store Operated Calcium Entry Modulating Mitochondrial Functioning in SH-SY5Y Neuroblastoma Cells.
    Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2015, Volume: 37, Issue:2

    The effect of four secondary metabolites isolated from sponge Spongionella, gracilins H, A, L and tetrahydroaplysulphurin-1 on Calcium ion (Ca2+) fluxes were studied in SH-SY5Y neuroblastoma cells.. These compounds did not modify cytosolic baseline Ca2+-levels. Nevertheless, when cytosolic Ca2+-influx through store operated calcium channels (SOC channels) was stimulated with Thapsigargin (Tg), a strong inhibition was observed in the presence of gracilin A, gracilin L and tetrahydroaplysulphurin-1. Since these compounds were able to protect mitochondria from oxidative stress, the role of this organelle in the Ca2+-influx inhibition was tested. In this sense, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) and Cyclosporine A (CsA) were used. Surprisingly, both the inhibitory effect over Tg-sensitive stores and Ca2+ influx through SOC channels produced by FCCP were abolished with different potencies by Spongionella compounds in a similar way than CsA. CsA is able to avoid Mitochondrial Permeability Transition Pore (mPTP) opening. As well as CsA, Spongionella compounds reverted mPTP opening induced by FCCP. In the case of CsA the mPTP blockade is due to the direct binding to Cyclophilin D (Cyp D), a mitochondrial matrix protein. This association was also observed between gracilin L and tetrahydroaplysulphurin-1 and Cyp D. Therefore, Spongionella compounds modulate mitochondrial activity by preventing mPTP opening by binding to Cyp D.. These effects make Spongionella compounds as new family of compounds with promising activity in human diseases where mitochondrial alterations are implicated.

    Topics: Animals; Calcium; Calcium Channels; Cell Line, Tumor; Cyclosporine; Diterpenes; Humans; Mitochondria; Neuroblastoma; Oxidative Stress; Porifera; Secondary Metabolism; Thapsigargin

2015
Calcium regulates the interaction of amyloid precursor protein with Homer3 protein.
    Neurobiology of aging, 2014, Volume: 35, Issue:9

    Ca(2+) dysregulation is an important factor implicated in Alzheimer's disease pathogenesis. The mechanisms mediating the reciprocal regulation of Ca(2+) homeostasis and amyloid precursor protein (APP) metabolism, function, and protein interactions are not well known. We have previously shown that APP interacts with Homer proteins, which inhibit APP processing toward amyloid-β. In this study, we investigated the effect of Ca(2+) homeostasis alterations on APP/Homer3 interaction. Influx of extracellular Ca(2+) upon treatment of HEK293 cells with the ionophore A23187 or addition of extracellular Ca(2+) in cells starved of calcium specifically reduced APP/Homer3 but not APP/X11a interaction. Endoplasmic reticulum Ca(2+) store depletion by thapsigargin followed by store-operated calcium entry also decreased the interaction. Interestingly, application of a phospholipase C stimulator, which causes inositol 1,4,5-trisphosphate-induced endoplasmic reticulum Ca(2+) release, caused dissociation of APP/Homer3 complex. In human neuroblastoma cells, membrane depolarization also disrupted the interaction. This is the first study showing that changes in Ca(2+) homeostasis affect APP protein interactions. Our results suggest that Ca(2+) and Homers play a significant role in the development of Alzheimer's disease pathology.

    Topics: Alzheimer Disease; Amyloid beta-Protein Precursor; Calcimycin; Calcium; Calcium Ionophores; Carrier Proteins; Endoplasmic Reticulum; HEK293 Cells; Homer Scaffolding Proteins; Humans; Membrane Potentials; Neuroblastoma; Protein Binding; Thapsigargin; Tumor Cells, Cultured

2014
Transcriptional and post-translational regulation of mouse cation transport regulator homolog 1.
    Molecular and cellular biochemistry, 2013, Volume: 380, Issue:1-2

    Recently, cation transport regulator homolog 1 (Chac1) has been identified as a novel pro-apoptotic factor in cells under endoplasmic reticulum (ER) stress. Of the three major ER stress sensors, it is suggested that ATF4 participates in the transcriptional regulation of Chac1 gene expression. The precise characterization of the Chac1 promoter, however, has not yet been elucidated. In this study, we detected the induction of Chac1 mRNA expression using DNA array analysis and RT-PCR of thapsigargin (Tg)-inducible genes in Neuro2a cells. Chac1 mRNA expression was also induced immediately following treatment with tunicamycin (Tm) and brefeldin A. Characterization of the mouse Chac1 promoter activity using a luciferase reporter assay revealed that the CREB/ATF element and amino acid response element in the mouse Chac1 promoter are functional and respond to Tm stimulation and ATF4 overexpression. Mutations in either element in the Chac1 promoter did not inhibit the responsiveness of this promoter to Tm and ATF4; however, mutations in both of these elements dramatically decreased the basal activity and response to ER stress stimuli. In addition to the transcriptional regulation, we found that Chac1 protein expression was only detected in the presence of MG132, a proteasome inhibitor, even though mouse Chac1 gene was transiently overexpressed in Neuro2a cells. Taken together, we are the first to demonstrate the transcriptional and post-translational regulation of Chac1 expression in a neuronal cell line.

    Topics: Activating Transcription Factor 4; Animals; Base Sequence; Blotting, Western; Cell Line, Tumor; Connexins; Cysteine Proteinase Inhibitors; Endoplasmic Reticulum Stress; gamma-Glutamylcyclotransferase; Gene Expression Regulation; Intracellular Signaling Peptides and Proteins; Leupeptins; Mice; Molecular Sequence Data; Mutation; Neuroblastoma; Promoter Regions, Genetic; Protein Biosynthesis; Reverse Transcriptase Polymerase Chain Reaction; Thapsigargin; Transcription, Genetic; Tunicamycin

2013
Transcriptional regulation of mouse mesencephalic astrocyte-derived neurotrophic factor in Neuro2a cells.
    Cellular & molecular biology letters, 2013, Volume: 18, Issue:3

    Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a novel type of trophic factor. Recent studies indicate that the MANF gene is induced in response to endoplasmic reticulum (ER) stress through ER stress response element II (ERSE-II) in its 5'-flanking region. In this study, we evaluated the roles of six ER stress response transcription factors in the regulation of the promoter activities of the mouse MANF gene via ERSE-II using various types of mutant MANF luciferase reporter constructs. Treatment with thapsigargin (Tg) induced MANF mRNA generation in parallel with the elevation of ATF6α, sXBP and Luman mRNA levels in Neuro2a cells. Of the six transcription factors, ATF6β most strongly increased the MANF promoter activity via ERSE-II, while the effects of ATF6β and sXBP1 were moderate. However, overexpression of Luman or OASIS did not enhance ERSE-II-dependent MANF promoter activity in Neuro2a cells. To evaluate the relationships between transcription factors in the regulation of ERSE-II-dependent MANF promoter activity, we transfected two effective transcription factor constructs chosen from ATF6α, ATF6β, uXBP1 and sXBP1 into Neuro2a cells with the MANF reporter construct. The MANF promoter activity induced by co-transfection of ATF6α with ATF6β was significantly lower than that induced by ATF6α alone, while other combinations did not show any effect on the ERSE-II-dependent MANF promoter activity in Neuro2a cells. Our study is the first to show the efficiency of ER stress-related transcription factors for ERSE-II in activating the transcription of the mouse MANF gene in Neuro2a cells.

    Topics: Activating Transcription Factor 6; Animals; Blotting, Western; Cell Line, Tumor; DNA-Binding Proteins; Endoplasmic Reticulum Stress; Enzyme Inhibitors; Gene Expression Regulation; Luciferases; Mice; Mutation; Nerve Growth Factors; Neuroblastoma; Promoter Regions, Genetic; Regulatory Factor X Transcription Factors; Reverse Transcriptase Polymerase Chain Reaction; Thapsigargin; Transcription Factors; Transcription, Genetic; Transfection

2013
Proteome-wide study of endoplasmic reticulum stress induced by thapsigargin in N2a neuroblastoma cells.
    Neurochemistry international, 2013, Volume: 62, Issue:1

    Disturbances in intraluminal endoplasmic reticulum (ER) Ca(2+) concentration leads to the accumulation of unfolded proteins and perturbation of intracellular Ca(2+) homeostasis, which has a huge impact on mitochondrial functioning under normal and stress conditions and can trigger cell death. Thapsigargin (TG) is widely used to model cellular ER stress as it is a selective and powerful inhibitor of sarcoplasmic/endoplasmic reticulum Ca(2+) ATPases. Here we provide a representative proteome-wide picture of ER stress induced by TG in N2a neuroblastoma cells. Our proteomics study revealed numerous significant protein expression changes in TG-treated N2a cell lysates analysed by two-dimensional electrophoresis followed by mass spectrometric protein identification. The proteomic signature supports the evidence of increased bioenergetic activity of mitochondria as several mitochondrial enzymes with roles in ATP-production, tricarboxylic acid cycle and other mitochondrial metabolic processes were upregulated. In addition, the upregulation of the main ER resident proteins confirmed the onset of ER stress during TG treatment. It has become widely accepted that metabolic activity of mitochondria is induced in the early phases in ER stress, which can trigger mitochondrial collapse and subsequent cell death. Further investigations of this cellular stress response in different neuronal model systems like N2a cells could help to elucidate several neurodegenerative disorders in which ER stress is implicated.

    Topics: Blotting, Western; Cell Line, Tumor; Cell Survival; Cells, Cultured; Electrophoresis, Gel, Two-Dimensional; Endoplasmic Reticulum Chaperone BiP; Endoplasmic Reticulum Stress; Energy Metabolism; Enzyme Inhibitors; Heat-Shock Proteins; Humans; Image Processing, Computer-Assisted; Mitochondria; Molecular Chaperones; Neurites; Neuroblastoma; Proteome; Spectrum Analysis; Thapsigargin

2013
The APP intracellular domain (AICD) potentiates ER stress-induced apoptosis.
    Neurobiology of aging, 2012, Volume: 33, Issue:9

    Here we employed human SHEP neuroblastoma cells either stably or inducibly expressing the amyloid precursor protein (APP) intracellular domain (AICD) to investigate its ability to modulate stress-induced cell death. Analysis of effector caspase activation revealed that AICD overexpression was specifically associated with an increased sensitivity to apoptosis induced by the 2 endoplasmic reticulum (ER) stressors thapsigargin and tunicamycin, but not by staurosporine (STS). Basal and ER stress-induced expression of Bip/Grp78 and C/EBP-homologous protein/GADD153 were not altered by AICD implying that AICD potentiated cell death downstream or independent of the conserved unfolded protein response (UPR). Interestingly, quantitative polymerase chain reaction analysis and reporter gene assays revealed that AICD significantly downregulated messenger RNA levels of the Alzheimer's disease susceptibility gene ApoJ/clusterin, indicating transcriptional repression. Knockdown of ApoJ/clusterin mimicked the effect of AICD on ER stress-induced apoptosis, but had no discernible effect on staurosporine-induced cell death. Our data suggest that altered levels of AICD may abolish the prosurvival function of ApoJ/clusterin and increase the susceptibility of neurons to ER stress-mediated cell death, a pathway that may contribute to the pathogenesis of Alzheimer's disease.

    Topics: Apoptosis; Cell Line, Tumor; Clusterin; Cytidine Deaminase; Dose-Response Relationship, Drug; Drug Interactions; Endoplasmic Reticulum Chaperone BiP; Endoplasmic Reticulum Stress; Enzyme Inhibitors; Flow Cytometry; Gene Expression Regulation; Green Fluorescent Proteins; Heat-Shock Proteins; Humans; Neuroblastoma; RNA, Messenger; Signal Transduction; Thapsigargin; Time Factors; Transfection; Tunicamycin; Unfolded Protein Response

2012
Increase in endoplasmic reticulum-associated tissue transglutaminase and enzymatic activation in a cellular model of Parkinson's disease.
    Neurobiology of disease, 2012, Volume: 45, Issue:3

    Parkinson's disease (PD) is characterized by accumulation of α-synuclein aggregates and degeneration of melanized, catecholaminergic neurons. The tissue transglutaminase (tTG) enzyme catalyzes molecular protein cross-linking. In PD, tTG levels are increased and cross-linking has been identified as an important factor in α-synuclein aggregation. In our quest to link tTGs distribution in the human brain to the hallmarks of PD pathology, we recently reported that catecholaminergic neurons in PD disease-affected brain areas display typical endoplasmic reticulum (ER) granules showing tTG immunoreactivity. In the present study, we set out to elucidate the nature of the interaction between tTG and the ER in PD pathogenesis, using retinoic-acid differentiated SH-SY5Y cells exposed to the PD-mimetic 1-methyl-4-phenylpyridinium (MPP(+)). Alike our observations in PD brain, MPP(+)-treated cells displayed typical TG-positive granules, that were also induced by other PD mimetics and by ER-stress inducing toxins. Additional immunocytochemical and biochemical investigation revealed that tTG is indeed associated to the ER, in particular at the cytoplasmic face of the ER. Upon MPP(+) exposure, additional recruitment of tTG toward the ER was found. In addition, we observed that MPP(+)-induced tTG activity results in transamidation of ER membrane proteins, like calnexin. Our data provide strong evidence for a, so far unrecognized, localization of tTG at the ER, at least in catecholaminergic neurons, and suggests that in PD activation of tTG may have a direct impact on ER function, in particular via post-translational modification of ER membrane proteins.

    Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Calnexin; Calreticulin; Cell Differentiation; Cell Line, Tumor; Cytoplasm; Cytoskeletal Proteins; Dose-Response Relationship, Drug; Drug Interactions; Endoplasmic Reticulum; Enzyme Inhibitors; Gene Expression Regulation, Enzymologic; Humans; Inositol 1,4,5-Trisphosphate Receptors; Microscopy, Electron, Transmission; Neuroblastoma; Neurons; Protein Disulfide-Isomerases; Thapsigargin; Transglutaminases; Tretinoin; Tunicamycin

2012
Neurotoxic injury pathways in differentiated mouse motor neuron-neuroblastoma hybrid (NSC-34D) cells in vitro--limited effect of riluzole on thapsigargin, but not staurosporine, hydrogen peroxide and homocysteine neurotoxicity.
    Toxicology and applied pharmacology, 2012, Jan-15, Volume: 258, Issue:2

    The neuroblastoma-spinal motor neuron fusion cell line, NSC-34, in its differentiated form, NSC-34D, permits examining the effects of riluzole, a proven treatment for amyotrophic lateral sclerosis (ALS) on cell death induction by staurosporine (STS), thapsigargin (Thaps), hydrogen peroxide (H(2)O(2)) and homocysteine (HCy). These neurotoxins, applied exogenously, have mechanisms of action related to the various proposed molecular pathogenetic pathways in ALS and are differentiated from endogenous cell death that is associated with cytoplasmic aggregate formation in motor neurons. Nuclear morphology, caspase-3/7 activation and high content imaging were used to assess toxicity of these neurotoxins with and without co-treatment with riluzole, a benzothiazole compound with multiple pharmacological actions. STS was the most potent neurotoxin at killing NSC-34D cells with a toxic concentration at which 50% of maximal cell death is achieved (TC(50)=0.01μM), followed by Thaps (TC(50)=0.9μM) and H(2)O(2) (TC(50)=15μM) with HCy requiring higher concentrations to kill at the same level (TC(50)=2200μM). Riluzole provided neurorescue with a 20% absolute reduction (47.6% relative reduction) in apoptotic cell death against Thaps-induced NSC-34D cell (p≤0.05), but had no effect on STS-, H(2)O(2)- and HCy-induced NSC-34D cell death. This effect of riluzole on Thaps induction of cell death was independent of caspase-3/7 activation. Riluzole mitigated a toxin that can cause intracellular calcium dysregulation associated with endoplasmic reticulum (ER) stress but not toxins associated with other cell death mechanisms.

    Topics: Amyotrophic Lateral Sclerosis; Animals; Apoptosis; Calcium; Caspase 3; Caspase 7; Cell Line; Dose-Response Relationship, Drug; Endoplasmic Reticulum; Homocysteine; Hybrid Cells; Hydrogen Peroxide; Mice; Motor Neurons; Neuroblastoma; Neuroprotective Agents; Neurotoxins; Riluzole; Staurosporine; Thapsigargin

2012
Repression of transcription of presenilin-1 inhibits γ-secretase independent ER Ca²⁺ leak that is impaired by FAD mutations.
    Journal of neurochemistry, 2012, Volume: 122, Issue:3

    Genetic deletion or mutations of presenilin genes (PS1/PS2) cause familial Alzheimer's disease and calcium (Ca²⁺) signaling abnormalities. PS1/PS2 act as endoplasmic reticulum (ER) Ca²⁺ leak channels that facilitate passive Ca²⁺ leak across ER membrane. Studies with PS1/PS2 double knockout (PS1/PS2-DKO) mouse embryonic fibroblasts showed that PS1/PS2 were responsible for 80% of passive Ca²⁺ leak from the lumen of endoplasmic reticulum to cytosol. Transient transfection of the wild type PS1 expression construct increased cytoplasmic Ca²⁺ as a result of Ca²⁺ leak across ER membrane whereas the FADPS1 (PS1-M146V) mutation construct alone or in combination with the wild type PS1 expression construct abrogated Ca²⁺ leak in SK-N-SH cells. Inhibition of basal c-jun-NH2-terminal kinase (JNK) activity by JNK inhibitor SP600125 repressed PS1 transcription and PS1 protein expression by augmenting p53 protein level in SK-N-SH cells (Lee and Das 2008). In this report we also showed that repression of PS1 transcription by JNK inhibitor SP600125 inhibited passive Ca²⁺ leak across ER membrane which could be rescued by expressing PS1 wild type and not by expressing FADPS1 (PS1-M146V) under a SP600125 non-responsive promoter. Treatment of SK-N-SH cells with SP600125 also triggered InsP3R-mediated Ca²⁺ release from the ER by addition of 500 nM bradykinin, an agonist of InsP3 receptor (InsP3R1) without changing the expression of InsP3R1. This data confirms that SP600125 increases the Ca²⁺ store in the ER by inhibiting PS1-mediated Ca²⁺ leak across ER membrane. p53, ZNF237 and Chromodomain helicase DNA-binding protein 3 which are repressors of PS1 transcription, also reduced Ca²⁺ leak across ER membrane in SK-N-SH cells but γ-secretase inhibitor or dominant negative γ-secretase-specific PS1 mutant (PS1-D257A) had no significant effect. Therefore, p53, ZNF237, and Chromodomain helicase DNA-binding protein 3 inhibit the function ER Ca²⁺ leak channels to regulate both ER and cytoplasmic Ca²⁺ levels and may potentially control Ca²⁺-signaling function of PS1.

    Topics: Amyloid Precursor Protein Secretases; Anthracenes; Calcium; Carrier Proteins; Cell Line, Tumor; Cytosol; DNA Helicases; Dose-Response Relationship, Drug; Endoplasmic Reticulum; Enzyme Inhibitors; Gene Expression Regulation, Neoplastic; Humans; Inositol 1,4,5-Trisphosphate Receptors; Methionine; Mi-2 Nucleosome Remodeling and Deacetylase Complex; Mutation; Neuroblastoma; Nuclear Proteins; Peptide Fragments; Presenilin-1; Signal Transduction; Statistics, Nonparametric; Thapsigargin; Transfection; Valine

2012
Muscarinic receptor regulation of osmosensitive taurine transport in human SH-SY5Y neuroblastoma cells.
    Journal of neurochemistry, 2009, Volume: 108, Issue:2

    The ability of G protein-coupled receptors to regulate osmosensitive uptake of the organic osmolyte, taurine, into human SH-SY5Y neuroblastoma cells has been examined. When monitored under isotonic conditions and in the presence of physiologically relevant taurine concentrations (1-100 microM), taurine influx was mediated exclusively by a Na(+)-dependent, high-affinity (K(m) = 2.5 microM) saturable transport mechanism (V(max) = 0.087 nmol/mg protein/min). Reductions in osmolarity of > 20% (attained under conditions of a constant NaCl concentration) resulted in an inhibition of taurine influx (> 30%) that could be attributed to a reduction in V(max), whereas the K(m) for uptake remained unchanged. Inclusion of the muscarinic cholinergic agonist, oxotremorine-M (Oxo-M), also resulted in an attenuation of taurine influx (EC(50) approximately 0.7 microM). Although Oxo-M-mediated inhibition of taurine uptake could be observed under isotonic conditions (approximately 25-30%), the magnitude of inhibition was significantly enhanced by hypotonicity (approximately 55-60%), a result that also reflected a reduction in the V(max), but not the K(m), for taurine transport. Oxo-M-mediated inhibition of taurine uptake was dependent upon the availability of extracellular Ca(2+) but was independent of protein kinase C activity. In addition to Oxo-M, inclusion of either thrombin or sphingosine 1-phosphate also attenuated volume-dependent taurine uptake. The ability of Oxo-M to inhibit the influx of taurine was attenuated by 4-[(2-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]butanoic acid, an inhibitor of the volume-sensitive organic osmolyte and anion channel. 4-[(2-Butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]butanoic acid also prevented receptor-mediated changes in the efflux and influx of K(+) under hypoosmotic conditions. The results suggest that muscarinic receptor activation can regulate both the volume-dependent efflux and uptake of taurine and that these events may be functionally coupled.

    Topics: Alanine; Antioxidants; Biological Transport; Calcium; Cell Line, Tumor; Cyclopentanes; Dose-Response Relationship, Drug; Enzyme Inhibitors; Guanidine; Humans; Indans; Lysophospholipids; Muscarinic Agonists; Neuroblastoma; Osmolar Concentration; Oxotremorine; Receptors, Muscarinic; Saline Solution, Hypertonic; Sphingosine; Taurine; Thapsigargin; Thrombin; Tritium

2009
Enhancement of activation of caspases by presenilin 1 gene mutations and its inhibition by secretase inhibitors.
    Journal of Alzheimer's disease : JAD, 2009, Volume: 16, Issue:3

    Presenilin 1 (PS1) gene mutations are the major causes of early-onset familial Alzheimer's disease. Acceleration of apoptosis is one of the major pathogenic mechanisms of PS1 mutants, and PS1 mutants have also been reported to induce overproduction of amyloid-beta protein 42. Here, we investigated aberrancy in activation of initiator caspases related to two PS1 gene mutations, I143T and G384A. Acceleration of apoptosis, elevation of caspase-3/7 activity, and significant increases in caspase-4, -8 and -9 activities during apoptosis induced by several agents were found in these mutant PS1-transfected cells. Interestingly, thapsigargin treatment enhanced caspase-4 and -9 activities in I143T-mutant PS1-transfected cells, while hydrogen peroxide treatment enhanced caspase-4, -8 and -9 activities in G384A-mutant PS1-transfected cells, indicating diverse apoptosis-promoting effects of PS1 gene mutations. In addition, treatment with a beta-secretase inhibitor or gamma-secretase inhibitor significantly attenuated the effects of the PS1 mutants on caspase-3/7 activation and recovered cell viability. Our present data suggest that these PS1 mutants accelerate the activation of initiator caspases and promote apoptosis, which may be associated, at least in part, with amyloid-beta production.

    Topics: Alzheimer Disease; Amyloid Precursor Protein Secretases; Apoptosis; Caspase 3; Caspase 7; Caspase 8; Caspase 9; Caspases; Caspases, Initiator; Cell Line, Tumor; Enzyme Activation; Enzyme Inhibitors; Humans; Hydrogen Peroxide; Mutation; Neuroblastoma; Neurons; Oxidants; Presenilin-1; Thapsigargin; Transfection

2009
Transthyretin oligomers induce calcium influx via voltage-gated calcium channels.
    Journal of neurochemistry, 2007, Volume: 100, Issue:2

    The deposition of transthyretin (TTR) amyloid in the PNS is a major pathological feature of familial amyloidotic polyneuropathy. The aim of the present study was to examine whether TTR could disrupt cytoplasmic Ca(2+) homeostasis and to determine the role of TTR aggregation in this process. The aggregation of amyloidogenic TTR was examined by solution turbidity, dynamic light scattering and atomic force microscopy. A nucleation-dependent polymerization process was observed in which TTR formed low molecular weight aggregates (oligomers < 100 nm in diameter) before the appearance of mature fibrils. TTR rapidly induced an increase in the concentration of intracellular Ca(2+) ([Ca(2+)](i)) when applied to SH-SY5Y human neuroblastoma cells. The greatest effect on [Ca(2+)](i) was induced by a preparation that contained the highest concentration of TTR oligomers. The TTR-induced increase in [Ca(2+)](i) was due to an influx of extracellular Ca(2+), mainly via L- and N-type voltage-gated calcium channels (VGCCs). These results suggest that increasing [Ca(2+)](i) via VGCCs may be an important early event which contributes to TTR-induced cytotoxicity, and that TTR oligomers, rather than mature fibrils, may be the major cytotoxic form of TTR.

    Topics: Calcium; Calcium Channel Blockers; Calcium Channels; Cell Line, Tumor; Dose-Response Relationship, Drug; Drug Interactions; Enzyme Inhibitors; Extracellular Fluid; Fura-2; Humans; Microscopy, Atomic Force; Mutation; Neuroblastoma; Prealbumin; Protein Structure, Quaternary; Thapsigargin; Time Factors; Transfection

2007
Role of Noxa in p53-independent fenretinide-induced apoptosis of neuroectodermal tumours.
    Apoptosis : an international journal on programmed cell death, 2007, Volume: 12, Issue:3

    Fenretinide-induced apoptosis of neuroectodermal tumour cells is mediated through generation of reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, mitochondrial cytochrome c release and caspase activation. The present study describes the requirement of the BH3-domain only protein Noxa for this process and its regulation by p53. Noxa expression was induced by fenretinide in neuroblastoma and melanoma cells, including those with mutated p53, and this induction was abolished by antioxidants. Knockdown of p53 by RNA interference (RNAi) demonstrated upregulation of Noxa protein levels in response to fenretinide was p53-independent, although evidence suggested that Noxa may be transcriptionally regulated by p53. The ER stress-inducing agent thapsigargin also induced p53-independent Noxa expression. Conversely, Noxa transcription in response to the chemotherapeutic agents cisplatin or temozolomide was inhibited by p53 knockdown. Apoptosis in response to cisplatin or temozolomide was also inhibited by abrogation of p53 expression yet apoptosis in response to fenretinide or thapsigargin was unaffected. RNAi-mediated down-regulation of Noxa inhibited apoptosis in response to fenretinide or thapsigargin, whereas apoptosis induced by cisplatin or temozolomide was unaffected. These data demonstrate the importance of Noxa induction in determining the apoptotic response to fenretinide and emphasise the role of Noxa in p53-independent apoptosis.

    Topics: Antineoplastic Agents; Apoptosis; Caspase 3; Cell Line, Tumor; Enzyme Activation; Enzyme Inhibitors; Fenretinide; Gene Expression Regulation; Humans; Melanoma; Neuroblastoma; Proto-Oncogene Proteins c-bcl-2; RNA Interference; Thapsigargin; Tumor Suppressor Protein p53

2007
Effect of toluene diisocyanate on homeostasis of intracellular-free calcium in human neuroblastoma SH-SY5Y cells.
    Toxicology and applied pharmacology, 2006, Mar-01, Volume: 211, Issue:2

    The mechanisms of TDI (2,4-toluene diisocyanate)-induced occupational asthma are not fully established. Previous studies have indicated that TDI induces non-specific bronchial hyperreactivity to methacholine and induces contraction of smooth muscle tissue by activating 'capsaicin-sensitive' nerves resulting asthma. Cytosolic-free calcium ion concentrations ([Ca(2+)](c)) are elevated when either capsaicin acts at vanilloid receptors, or methacholine at muscarinic receptors. This study therefore investigated the effects of TDI on Ca(2+) mobilization in human neuroblastoma SH-SY5Y cells. TDI was found to elevate [Ca(2+)](c) by releasing Ca(2+) from the intracellular stores and extracellular Ca(2+) influx. 500 microM TDI induced a net [Ca(2+)](c) increase of 112+/-8 and 78+/-6 nM in the presence and absence of extracellular Ca(2+), respectively. In Ca(2+)-free buffer, TDI induced Ca(2+) release from internal stores to reduce their Ca(2+) content and this reduction was evidenced by a suppression occurring on the [Ca(2+)](c) rise induced by thapsigargin, ionomycin, and methacholine after TDI incubation. In the presence of extracellular Ca(2+), simultaneous exposure to TDI and methacholine led a higher level of [Ca(2+)](c) compared to single methacholine stimulation, that might explain that TDI induces bronchial hyperreactivity to methacholine. We conclude that TDI is capable of interfering the [Ca(2+)](c) homeostasis including releasing Ca(2+) from internal stores and inducing extracellular Ca(2+) influx. The interaction of this novel character and bronchial hyperreactivity need further investigation.

    Topics: Atropine; Bridged Bicyclo Compounds, Heterocyclic; Calcium; Calcium Signaling; Cell Line, Tumor; Cytosol; Dose-Response Relationship, Drug; Drug Synergism; Egtazic Acid; Endoplasmic Reticulum; Hexamethonium; Homeostasis; Humans; Intracellular Fluid; Ionomycin; Methacholine Chloride; Neuroblastoma; Potassium; Pyridines; Receptor, Muscarinic M3; Thapsigargin; Toluene 2,4-Diisocyanate; Verapamil

2006
Diclofenac, a non-steroidal anti-inflammatory drug, suppresses apoptosis induced by endoplasmic reticulum stresses by inhibiting caspase signaling.
    Neuropharmacology, 2006, Volume: 50, Issue:5

    Non-steroidal anti-inflammatory drugs (NSAIDs) are frequently used in the treatment of inflammation and pain. In many reports, NSAIDs have induced apoptosis in a variety of cell lines such as colon cancer cells. On the other hand, more recently a few reports have found that NSAIDs protect against apoptosis. Here we investigate endoplasmic reticulum (ER)-stress-induced apoptosis of neuronal cells. The aim of this study is to examine the involvement of NSAIDs, in particular diclofenac, on ER-stress-induced apoptosis of human neuroblastoma SH-SY5Y cells. Diclofenac significantly suppressed SH-SY5Y cell death induced by two types of ER-stress-inducing agents: thapsigargin, an inhibitor of Ca2+-ATPase on the endoplasmic reticulum membrane, and tunicamycin, a glycosylation blocker. Other NSAIDs, such as indomethacin, ibuprofen, aspirin, and ketoprofen, also suppressed ER-stress-induced SH-SY5Y cell death. The dose-dependent anti-apoptotic effect of diclofenac did not correlate with the reduction of prostaglandin release. Administration of prostaglandin E2, which was a primary product of arachidonic metabolism, showed no effects against anti-apoptotic effects produced by diclofenac. Thapsigargin and tunicamycin each significantly activated caspase-3, -9, and -2 in the intrinsic apoptotic pathway in SH-SY5Y cells. Diclofenac suppressed the activation of caspases induced by both ER stresses. Thapsigargin and tunicamycin decreased the mitochondrial membrane potential in SH-SY5Y cells. Diclofenac suppressed the mitochondrial depolarization induced by both ER stresses. Diclofenac inhibited ER-stress-induced apoptosis of SH-SY5Y cells by suppressing the activation of caspases in the intrinsic apoptotic pathway. This is the first report to find that diclofenac has protective effects against ER-stress-induced apoptosis.

    Topics: Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; Caspases; Cell Line, Tumor; Cell Survival; Diclofenac; DNA Fragmentation; Dose-Response Relationship, Drug; Drug Interactions; Endoplasmic Reticulum; Enzyme Inhibitors; Enzyme-Linked Immunosorbent Assay; Fluorescent Antibody Technique; Humans; Neuroblastoma; Prostaglandins; Thapsigargin

2006
Cytoprotection by lithium and valproate varies between cell types and cellular stresses.
    European journal of pharmacology, 2006, Jun-06, Volume: 539, Issue:1-2

    Despite much evidence that lithium and valproate, two commonly used mood stabilizers, exhibit neuroprotective properties against an array of insults, the pharmacological relevance of such effects is not clear because most of these studies examined the acute effect of these drugs in supratherapeutic doses against insults which were of limited disease relevance to bipolar disorder. In the present study, we investigated whether lithium and valproate, at clinically relevant doses, protects human neuroblastoma (SH-SY5Y) and glioma (SVG and U87) cells against oxidative stress and endoplasmic reticulum stress in a time-dependent manner. Pretreatment of SH-SY5Y cells for 7 days, but not 1 day, with 1 mM of lithium or 0.6 mM of valproate significantly reduced rotenone and H2O2-induced cytotoxicity, cytochrome c release and caspase-3 activation, and increased Bcl-2 levels. Conversely, neither acute nor chronic treatment of SH-SY5Y cells with lithium or valproate elicited cytoprotective responses against thapsigargin-evoked cell death and caspase-3 activation. Moreover, inhibitors of glycogen synthase kinase-3 (GSK-3), kenpaullone and SB216763, abrogated rotenone-induced, but not H2O2-induced, cytotoxicity. Thus the cytoprotective effects of lithium and valproate against H2O2-induced cell death is likely independent of GSK-3 inhibition. On the other hand, chronic lithium or valproate treatment did not ameliorate cytotoxicity induced by rotenone, H2O2, and thapsigargin in SVG astroglial and U87 MG glioma cell lines. Our results suggest that lithium and valproate may decrease vulnerability of human neural, but not glial, cells to cellular injury evoked by oxidative stress possibly arising from putative mitochondrial disturbances implicated in bipolar disorder.

    Topics: Antimanic Agents; Caspase 3; Caspases; Cell Death; Cell Line, Tumor; Cytochromes c; Cytoprotection; Electron Transport Complex I; Endoplasmic Reticulum; Enzyme Activation; Enzyme Inhibitors; Glioma; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Humans; Hydrogen Peroxide; Lithium Compounds; Neuroblastoma; Neuroprotective Agents; Oxidative Stress; Proto-Oncogene Proteins c-bcl-2; Rotenone; Thapsigargin; Up-Regulation; Valproic Acid

2006
Modulation of Gq-protein-coupled inositol trisphosphate and Ca2+ signaling by the membrane potential.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2006, Sep-27, Volume: 26, Issue:39

    Gq-protein-coupled receptors (GqPCRs) are widely distributed in the CNS and play fundamental roles in a variety of neuronal processes. Their activation results in phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis and Ca2+ release from intracellular stores via the phospholipase C (PLC)-inositol 1,4,5-trisphosphate (IP3) signaling pathway. Because early GqPCR signaling events occur at the plasma membrane of neurons, they might be influenced by changes in membrane potential. In this study, we use combined patch-clamp and imaging methods to investigate whether membrane potential changes can modulate GqPCR signaling in neurons. Our results demonstrate that GqPCR signaling in the human neuronal cell line SH-SY5Y and in rat cerebellar granule neurons is directly sensitive to changes in membrane potential, even in the absence of extracellular Ca2+. Depolarization has a bidirectional effect on GqPCR signaling, potentiating thapsigargin-sensitive Ca2+ responses to muscarinic receptor activation but attenuating those mediated by bradykinin receptors. The depolarization-evoked potentiation of the muscarinic signaling is graded, bipolar, non-inactivating, and with no apparent upper limit, ruling out traditional voltage-gated ion channels as the primary voltage sensors. Flash photolysis of caged IP3/GPIP2 (glycerophosphoryl-myo-inositol 4,5-bisphosphate) places the voltage sensor before the level of the Ca2+ store, and measurements using the fluorescent bioprobe eGFP-PH(PLCdelta) (enhanced green fluorescent protein-pleckstrin homology domain-PLCdelta) directly demonstrate that voltage affects muscarinic signaling at the level of the IP3 production pathway. The sensitivity of GqPCR IP3 signaling in neurons to voltage itself may represent a fundamental mechanism by which ionotropic signals can shape metabotropic receptor activity in neurons and influence processes such as synaptic plasticity in which the detection of coincident signals is crucial.

    Topics: 1-Methyl-3-isobutylxanthine; Animals; Calcium Signaling; Cell Line; Cell Line, Tumor; Cells, Cultured; Cerebellum; CHO Cells; Cricetinae; Cricetulus; Humans; Inositol 1,4,5-Trisphosphate; Inositol Phosphates; Isoenzymes; Kidney; Membrane Potentials; Microscopy, Fluorescence; Neuroblastoma; Neuronal Plasticity; Neurons; Nifedipine; Oxotremorine; Patch-Clamp Techniques; Phosphatidylinositol 4,5-Diphosphate; Phospholipase C delta; Photolysis; Rats; Receptor, Muscarinic M3; Recombinant Fusion Proteins; Thapsigargin; Transfection; Type C Phospholipases

2006
Mechanistic and functional changes in Ca2+ entry after retinoic acid-induced differentiation of neuroblastoma cells.
    The Biochemical journal, 2005, Jun-15, Volume: 388, Issue:Pt 3

    We have investigated effects of neuronal differentiation on hormone-induced Ca2+ entry. Fura-2 fluorescence measurements of undifferentiated SH-SY5Y neuroblastoma cells, stimulated with methacholine, revealed the presence of voltage-operated Ca2+-permeable, Mn2+-impermeable entry pathways, and at least two voltage-independent Ca2+- and Mn2+-permeable entry pathways, all of which apparently contribute to both peak and plateau phases of the Ca2+ signal. Similar experiments using 9-cis retinoic acid-differentiated cells, however, revealed voltage-operated Ca2+-permeable, Mn2+-impermeable channels, and, more significantly, the absence or down-regulation of the most predominant of the voltage-independent entry pathways. This down-regulated pathway is probably due to CCE (capacitative Ca2+ entry), since thapsigargin also stimulated Ca2+ and Mn2+ entry in undifferentiated but not differentiated cells. The Ca2+ entry components remaining in methacholine-stimulated differentiated cells contributed to only the plateau phase of the Ca2+ signal. We conclude that differentiation of SH-SY5Y cells results in a mechanistic and functional change in hormone-stimulated Ca2+ entry. In undifferentiated cells, voltage-operated Ca2+ channels, CCE and NCCE (non-CCE) pathways are present. Of the voltage-independent pathways, the predominant one appears to be CCE. These pathways contribute to both peak and plateau phases of the Ca2+ signal. In differentiated cells, CCE is either absent or down-regulated, whereas voltage-operated entry and NCCE remain active and contribute to only the plateau phase of the Ca2+ signal.

    Topics: Calcium; Calcium Channels; Calcium Signaling; Cations, Divalent; Cell Differentiation; Cell Line, Tumor; Enzyme Inhibitors; Humans; Manganese; Methacholine Chloride; Muscarinic Agonists; Neuroblastoma; Neurons; Thapsigargin; Tretinoin

2005
Adrenomedullin stimulates nitric oxide release from SK-N-SH human neuroblastoma cells by modulating intracellular calcium mobilization.
    Endocrinology, 2005, Volume: 146, Issue:5

    We used SK-N-SH human neuroblastoma cells to test the hypothesis that adrenomedullin (ADM), a multifunctional neuropeptide, stimulates nitric oxide (NO) release by modulating intracellular free calcium concentration ([Ca2+]i) in neuron-like cells. We used a nitrite assay to demonstrate that ADM (10 pM to 100 nM) stimulated NO release from the cells, with a maximal response observed with 1 nM at 30 min. This response was blocked by 1 nM ADM(22-52), an ADM receptor antagonist or 2 microM vinyl-L-NIO, a neuronal NO synthase inhibitor. In addition, 5 microM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester, an intracellular calcium chelator, eliminated the ADM-induced NO release. Similar results were observed when the cells were incubated in calcium-free medium or when L-type calcium channels were inhibited with 5 microM nifedipine or 10 microM nitrendipine. Depletion of calcium stores in the endoplasmic reticulum (ER) with 1 microM cyclopiazonic acid or 150 nM thapsigargin, or inhibition of ryanodine-sensitive receptors in the ER with 10 microM ryanodine attenuated the ADM-induced NO release. NO responses to ADM were mimicked by 1 mM dibutyryl cAMP, a cAMP analog, and were abrogated by 5 microM H-89, a protein kinase A inhibitor. Furthermore, Fluo-4 fluorescence-activated cell sorter analysis showed that ADM (1 nM) significantly increased [Ca2+]i at 30 min. This response was blocked by nifedipine (5 microM) or H-89 (5 microM) and was reduced by ryanodine (10 microM). These results suggest that ADM stimulates calcium influx through L-type calcium channels and ryanodine-sensitive calcium release from the ER, probably via cAMP-protein kinase A-dependent mechanisms. These elevations in [Ca2+)]i cause activation of neuronal NO synthase and NO release.

    Topics: Adrenomedullin; Calcitonin Gene-Related Peptide; Calcium; Calcium Channels, L-Type; Chelating Agents; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Cytoplasm; Egtazic Acid; Endoplasmic Reticulum; Enzyme Inhibitors; Gene Expression; Humans; Neuroblastoma; Neurons; Nitric Oxide; Peptide Fragments; Peptides; Receptors, Adrenomedullin; Receptors, Peptide; RNA, Messenger; Ryanodine Receptor Calcium Release Channel; Thapsigargin; Tumor Cells, Cultured

2005
Caspases-2, -3, and -7 are involved in thapsigargin-induced apoptosis of SH-SY5Y neuroblastoma cells.
    Journal of neuroscience research, 2005, May-15, Volume: 80, Issue:4

    Caspase-2 has been reported to play a role in the cell death observed under a number of different conditions; however, it is unclear whether caspase-2 plays a role in cell death triggered by endoplasmic reticulum (ER) stress. The purpose of this study was to determine whether caspase-2 is involved in SH-SY5Y neuroblastoma cell death caused by thapsigargin-induced ER stress. Thapsigargin treatment (1 microM, 16 hr) stimulated the proteolytic processing of caspases-2, -3, and -7, suggesting that these caspases are activated by ER stress. The role of these caspases in thapsigargin-induced cell death was examined by using cell-permeable caspase inhibitors. In the absence of pretreatment with caspase inhibitors, thapsigargin (0.1 microM, 20 hr) reduced the number of viable cells to 53.9% +/- 3.3% of starting-time control. Pretreatment for 90 min with either the pan-caspase inhibitor Z-VAD-FMK or the caspase-2-selective inhibitor Z-VDVAD-FMK inhibited thapsigargin-stimulated cell death, resulting in the number of viable cells being 115.6% +/- 5.3% (P < 0.001) and 69.3% +/- 2.9% (P < 0.01), respectively, of starting-time control. Neither the caspase-3- and -7-selective inhibitor Z-DEVD-FMK nor the caspase-9-selective inhibitor Z-LEHD-FMK significantly affected thapsigargin-stimulated cell death. An anticaspase-12-reactive protein was also identified in SH-SY5Y cells, but thapsigargin had no effect on proteolysis of this protein. These data demonstrate that caspases-2, -3, and -7 are involved in ER stress-mediated death of SH-SY5Y cells.

    Topics: Analysis of Variance; Apoptosis; Blotting, Western; Caspase 2; Caspase 3; Caspase 7; Caspase Inhibitors; Caspases; Cell Line, Tumor; Drug Interactions; Enzyme Inhibitors; Humans; Neuroblastoma; Thapsigargin

2005
Albumin prevents mitochondrial depolarization and apoptosis elicited by endoplasmic reticulum calcium depletion of neuroblastoma cells.
    European journal of pharmacology, 2005, Sep-27, Volume: 520, Issue:1-3

    Serum albumin protects against cell death elicited by various cytotoxic agents; however, conflicting views on the protective mechanism still remain. Hence, we have studied the ability of serum albumin to prevent apoptosis of human neuroblastoma SH-SY 5 Y cells elicited by four compounds known to release Ca(2+) from the endoplasmic reticulum, i.e. dotarizine, flunarizine, thapsigargin and cyclopiazonic acid. Spontaneous basal apoptosis, after 24 h incubation in Dulbecco's Modified Eagle Medium (DMEM) containing 10% serum, was 5%. Dotarizine (30--50 microM) enhanced basal apoptosis to 18--43%, flunarizine (30--50 microM) to 15%, thapsigargin (1--10 microM) to 21--35%, and cyclopiazonic acid (100 microM) to 10%. Serum deprivation augmented basal apoptosis to 20%. Under serum-free medium, 30 microM dotarizine or flunarizine drastically enhanced apoptosis to 63% and 68%, respectively; the increase was milder with 1 microM thapsigargin (37%) and 30 microM cyclopiazonic acid (27%). In serum-free medium, albumin (29 or 49 mg/ml) fully prevented the apoptotic effects of dotarizine, flunarizine and cyclopiazonic acid. The four compounds increased the cytosolic Ca(2+) concentration ([Ca(2+)](c)) in fluo-4 loaded cells; such increase developed slowly to reach a plateau after several minutes, followed by a slow decline. Albumin did not modify the kinetic parameters of such increase. In the absence of serum, dotarizine, flunarizine, thapsigargin, and cyclopiazonic acid caused mitochondrial depolarization in tetramethylrhodamine ethyl ester (TMRE)-loaded cells; depolarization was inhibited by cytoprotective concentrations of albumin. These results suggest that albumin protects cells from entering into apoptosis by preventing mitochondrial depolarization. They also suggest that inhibition of mitochondrial depolarization might become a target to develop new anti-apoptotic compounds with therapeutic neuroprotective potential in stroke, Alzheimer's disease, and other neurodegenerative diseases.

    Topics: Apoptosis; Benzhydryl Compounds; Calcium; Calcium Channel Blockers; Cell Line, Tumor; Culture Media, Serum-Free; Dose-Response Relationship, Drug; Endoplasmic Reticulum; Enzyme Inhibitors; Flunarizine; Humans; Membrane Potentials; Mitochondria; Neuroblastoma; Piperazines; Serum Albumin, Bovine; Thapsigargin; Time Factors

2005
Galantamine prevents apoptosis induced by beta-amyloid and thapsigargin: involvement of nicotinic acetylcholine receptors.
    Neuropharmacology, 2004, Volume: 46, Issue:1

    Galantamine is currently used to treat Alzheimer's disease patients; it behaves as a mild blocker of acetylcholinesterase (AChE) and has an allosteric modulating action on nicotinic acetylcholine receptors (nAChRs). In this study, we observed that galantamine prevented cell death induced by the peptide beta-amyloid(1-40) and thapsigargin in the human neuroblastoma cell line SH-SY5Y, as well as in bovine chromaffin cells. The protective effect of galantamine was concentration-dependent in both cell types; maximum protection was produced at 300 nM. The antiapoptotic effect of galantamine at 300 nM, against beta-amyloid(1-40) or thapsigargin-induced toxicity, was reversed by alpha-bungarotoxin. At neuroprotective concentrations, galantamine caused a mild and sustained elevation of the cytosolic concentration of calcium, [Ca2+]c, measured in single cells loaded with Fura-2. Incubation of the cells for 48 h with 300 nM galantamine doubled the density of alpha7 nicotinic receptors and tripled the expression of the antiapoptotic protein Bcl-2. These results strongly suggest that galantamine can prevent apoptotic cell death by inducing neuroprotection through a mechanism related to that described for nicotine, i.e. activation of nAChRs and upregulation of Bcl-2. These findings might explain the long-term beneficial effects of galantamine in patients suffering of Alzheimer's disease.

    Topics: Amyloid beta-Peptides; Analysis of Variance; Animals; Apoptosis; Blotting, Western; Bungarotoxins; Calcium; Cattle; Cell Line, Tumor; Cholinesterase Inhibitors; Chromaffin Cells; Drug Interactions; Enzyme Inhibitors; Flow Cytometry; Fura-2; Galantamine; Humans; Immunohistochemistry; Neuroblastoma; Nicotine; Peptide Fragments; Proto-Oncogene Proteins c-bcl-2; Rats; Receptors, Nicotinic; Thapsigargin

2004
Non-voltage-gated L-type Ca2+ channels in human T cells: pharmacology and molecular characterization of the major alpha pore-forming and auxiliary beta-subunits.
    The Journal of biological chemistry, 2004, May-07, Volume: 279, Issue:19

    In T lymphocytes, engagement of the antigen receptor leads to a biphasic Ca2+ flux consisting of a mobilization of Ca2+ from intracellular stores followed by a lower but sustained elevation that is dependent on extracellular Ca2+. The prolonged Ca2+ flux is required for activation of transcription factors and for subsequent activation of the T cell. Ca2+ influx requires as yet unidentified Ca2+ channels, which potentially play a role in T cell activation. Here we present evidence that human T cells express a non-voltage-gated Ca2+ channel related to L-type voltage-gated Ca2+ channels. Drugs that block classical L-type channels inhibited the initial phase of the antigen receptor-induced Ca2+ flux and could also inhibit the sustained phase of the Ca2+ signal suggesting a role for the L-type Ca2+ channel in antigen receptor signaling. T cells expressed transcripts for the alpha(1) 1.2 and alpha(1) 1.3 pore-forming subunits of L-type voltage-gated Ca2+ channels and transcripts for all four known beta-subunits including several potential new splice variants. Jurkat T leukemia cells expressed a small amount of full-length alpha(1)1.2 protein but the dominant form was a truncated protein identical in size to a truncated alpha(1) 1.2 protein known to be expressed in B lymphocytes. They further expressed a truncated form of the alpha(1) 1.3 subunit and auxiliary beta1- and beta3-subunit proteins. Our data strongly suggest that functional but non-voltage-gated L-type Ca2+ channels are expressed at the plasma membrane in T cells and play a role in the antigen receptor-mediated Ca2+ flux in these cells.

    Topics: Alternative Splicing; Calcium; Calcium Channels, L-Type; Cell Line, Tumor; Cell Membrane; Cell Separation; DNA Primers; Dose-Response Relationship, Drug; Electrophoresis, Polyacrylamide Gel; Flow Cytometry; Humans; Immunoblotting; Jurkat Cells; Neuroblastoma; Protein Conformation; Protein Structure, Tertiary; Reverse Transcriptase Polymerase Chain Reaction; RNA; RNA, Messenger; Signal Transduction; T-Lymphocytes; Thapsigargin; Time Factors; Transcription, Genetic

2004
Involvement of ERK MAP kinase in endoplasmic reticulum stress in SH-SY5Y human neuroblastoma cells.
    Journal of neurochemistry, 2004, Volume: 89, Issue:1

    Endoplasmic reticulum (ER) stress has increasingly come into focus as a factor contributing to neuronal injury. Although caspase-dependent mechanisms have been implicated in ER stress, the signaling pathways involved remain unclear. In this study, we examined the role of the extracellular signal-regulated kinase (ERK), a mitogen-activated protein (MAP) kinase pathway that is highly conserved in many systems for balancing cell survival and death. Prolonged treatment of the human neuroblastoma cell line SH-SY5Y with thapsigargin, an inducer of ER stress, increased cell death over 24-48 h, as measured by LDH release. Caspases were involved; increased levels of active caspase-3 and cleaved caspase substrate PARP were detected, and treatment with Z-VAD-FMK reduced thapsigargin-induced cytotoxicity. In contrast, inhibition of calpain was not protective, although calpain was activated following thapsigargin treatment. An early and transient phosphorylation of ERK1/2 occurred after thapsigargin-induced ER stress, and targeting this pathway with the MEK inhibitors U0126 or PD98059 significantly reduced cell death. Similar cytoprotection was obtained against brefeldin A, another ER stress agent. However, protection against ER stress via ERK inhibition was not accompanied by amelioration of caspase-3 activation, PARP cleavage, or DNA laddering. These data indicate that ERK may contribute to non-caspase-dependent pathways of injury after ER stress.

    Topics: Brefeldin A; Carrier Proteins; Caspase Inhibitors; Caspases; Cell Death; Cell Line, Tumor; Endoplasmic Reticulum; Endoplasmic Reticulum Chaperone BiP; Enzyme Inhibitors; Heat-Shock Proteins; Humans; Mitogen-Activated Protein Kinases; Molecular Chaperones; Neuroblastoma; Protein Synthesis Inhibitors; Stress, Physiological; Thapsigargin

2004
ITH4012 (ethyl 5-amino-6,7,8,9-tetrahydro-2-methyl-4-phenylbenzol[1,8]naphthyridine-3-carboxylate), a novel acetylcholinesterase inhibitor with "calcium promotor" and neuroprotective properties.
    The Journal of pharmacology and experimental therapeutics, 2004, Volume: 310, Issue:3

    Ethyl 5-amino-6,7,8,9-tetrahydro-2-methyl-4-phenylbenzol[1,8] naphthyridine-3-carboxylate (ITH4012) is a novel tacrine derivative that can reduce cell death induced by various compounds with different mechanisms of action, such as thapsigargin (reticular stress), H2O2 (free radicals), and veratridine (calcium overload), in bovine chromaffin cell. Cell viability, quantified as lactic dehydrogenase release, was significantly reduced by ITH4012 at concentrations ranging from 0.01 to 3 microM. In the human neuroblastoma cell line SH-SY5Y, ITH4012 also reduced amyloid beta25-35-induced apoptosis, determined by flow cytometry. ITH4012 caused a slight elevation in the cytosolic concentration of Ca2+ in fura 2-loaded bovine chromaffin cells, which could be related to the induction of protein synthesis relevant for cell survival. Blockade of protein synthesis by cycloheximide or blockade of Bcl-2's active site with HA14-1 (ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate) reversed the cytoprotective action of ITH4012. Furthermore, exposure of bovine chromaffin cells for 24 or 48 h to neuroprotective concentrations of this compound enhanced, nearly 3-fold, the expression of the antiapoptotic protein Bcl-2. In conclusion, ITH4012 is a tacrine derivative that maintains acetylcholinesterase-inhibiting activity (IC50=0.8 microM) but has the additional property of acting as a calcium promotor, a property leading to neuroprotection through the induction of antiapoptotic proteins.

    Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Amyloid beta-Peptides; Animals; Calcium; Cattle; Cholinesterase Inhibitors; Chromaffin Cells; Cytoprotection; Drug Combinations; Drug Interactions; Free Radicals; Humans; Neuroblastoma; Neuroprotective Agents; Proto-Oncogene Proteins c-bcl-2; Tacrine; Thapsigargin; Tumor Cells, Cultured; Veratridine

2004
Differential thapsigargin-sensitivities and interaction of Ca2+ stores in human SH-SY5Y neuroblastoma cells.
    Brain research, 2004, Jun-18, Volume: 1011, Issue:2

    In human SH-SY5Y neuroblastoma cells, two distinct intracellular Ca2+ stores, a KCl-/caffeine-sensitive and a carbachol-/IP3-sensitive store, were demonstrated previously. In this study, responses of these two intracellular Ca2+ stores to thapsigargin were characterized. Ca2+-release from these stores was evoked either by high K+ (100 mM KCl) or by 1 mM carbachol, and changes in the intracellular Ca2+ level were monitored using Fura-2 fluorimetry. A sequential stimulation protocol (KCl-->carbachol or vice versa) allowed evaluation of the individual contribution of different Ca2+ stores to the evoked intracellular Ca2+ ([Ca2+]i)-transients and the dynamic interaction between them. Thapsigargin (0.05 nM - 20 microM) alone induced a [Ca2+]i-transient. Both the carbachol- and the KCl-evoked [Ca2+]i-transients were inhibited by thapsigargin, but with very different sensitivities. Thapsigargin inhibited the carbachol-evoked [Ca2+]i-transients with (IC50 = 0.353 nM) or without (IC50 = 0.448 nM) a KCl-prestimulation, but an additional small component, with a much lower sensitivity (IC50=4814 nM), was observed in the absence of a KCl-prestimulation. In contrast, the KCl-evoked [Ca2+]i-transients displayed only one component with a very low sensitivity to thapsigargin in both absence (IC50=3343 nM) and presence (IC50=6858 nM) of a carbachol-prestimulation. These findings suggest that the sarco-/endoplasmic reticular Ca2+ ATPases associated with the KCl-/caffeine- and carbachol-/IP3-sensitive intracellular Ca2+ stores differ from each other, either in types or in their post-translational modification. Such difference might play important role in the regulation of neuronal Ca2+ homeostasis.

    Topics: Atropine; Calcium; Carbachol; Cell Line, Tumor; Cholinergic Agonists; Dose-Response Relationship, Drug; Drug Interactions; Enzyme Inhibitors; Fura-2; Humans; Inhibitory Concentration 50; Intracellular Space; Muscarinic Antagonists; Neuroblastoma; Potassium; Thapsigargin; Time Factors

2004
Regulation of FOXO3a by brain-derived neurotrophic factor in differentiated human SH-SY5Y neuroblastoma cells.
    Brain research. Molecular brain research, 2004, Jul-05, Volume: 126, Issue:1

    FOXO3a is a ubiquitously expressed mammalian forkhead transcription factor with a high expression level in adult brain. The activity of FOXO3a is inhibited by growth factors through activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling, which phosphorylates FOXO3a and decreases the level of FOXO3a in the nucleus. In the present study, we examined the regulation of FOXO3a by brain-derived neurotrophic factor (BDNF) in retinoic acid (RA)-differentiated human SH-SY5Y neuroblastoma cells. BDNF caused a rapid and time-dependent decrease of nuclear FOXO3a with a corresponding increase of cytosolic FOXO3a. The rate of the BDNF-induced nuclear/cytosolic redistribution was consistent with the time course of BDNF-induced threonine32-phosphorylation of FOXO3a, and was mediated by the PI3K/Akt signaling pathway. Active FOXO3a rapidly increased the level of Bcl-2-interacting mediator (bim) in differentiated SH-SY5Y cells, and BDNF decreased the FOXO3a-induced increase of bim through activation of both PI3K/Akt and Erk signaling pathways. Thapsigargin, an endoplasmic reticulum (ER) stress-inducing agent, significantly decreased threonine32-phosphorylation of FOXO3a, and increased nuclear and decreased cytosolic FOXO3a, suggesting that thapsigargin activates FOXO3a. Treatment with BDNF completely reversed and blocked the thapsigargin-induced dephosphorylation and nuclear accumulation of FOXO3a. In addition, protein phosphatase 1/2A inhibitors increased threonine32-phosphorylation of FOXO3a, decreased nuclear FOXO3a, and blocked thapsigargin-induced activity of FOXO3a. The regulatory effect of BDNF on FOXO3a and its target genes may play a significant role in the BDNF-mediated neuronal survival, differentiation, and plasticity.

    Topics: Apoptosis Regulatory Proteins; Bcl-2-Like Protein 11; Brain-Derived Neurotrophic Factor; Carrier Proteins; Cell Differentiation; Cell Line, Tumor; DNA-Binding Proteins; Enzyme Activation; Enzyme Inhibitors; Forkhead Box Protein O1; Forkhead Transcription Factors; Humans; Membrane Proteins; Neuroblastoma; Phosphorylation; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Recombinant Fusion Proteins; Serine; Signal Transduction; Subcellular Fractions; Thapsigargin; Threonine; Transcription Factors; Tretinoin

2004
Survival of mammalian B104 cells following neurite transection at different locations depends on somal Ca2+ concentration.
    Journal of neurobiology, 2004, Volume: 60, Issue:2

    We report that cell survival after neurite transection in a mammalian neuronal model (cultured B104 cells) critically depends on somal [Ca2+]i, a novel result that reconciles separate long-standing observations that somal survival decreases with more-proximal axonal transections and that increased somal Ca2+ is cytotoxic. Using fluorescence microscopy, we demonstrate that extracellular Ca2+ at the site of plasmalemmal transection is necessary to form a plasmalemmal barrier, and that other divalent ions (Ba2+, Mg2+) do not play a major role. We also show that extracellular Ca2+, rather than injury per se, initiates the formation of a plasmalemmal barrier and that a transient increase in somal [Ca2+]i significantly decreases the percentage of cells that survive neurite transection. Furthermore, we show that the increased somal [Ca2+]i and decreased cell survival following proximal transections are not due to less frequent or slower plasmalemmal sealing or Ca2+ entry through plasmalemmal Na+ and Ca2+ channels. Rather, the increased somal [Ca2+]i and lethality of proximal neurite injuries may be due to the decreased path length/increased diameter for Ca2+ entering the transection site to reach the soma. A ryanodine block of Ca2+ release from internal stores before transection has no effect on cell survival; however, a ryanodine- or thapsigargin-induced buildup of somal [Ca2+]i before transection markedly reduces cell survival, suggesting a minor involvement of Ca2+-induced release from internal stores. Finally, we show that cell survival following proximal injuries can be enhanced by increasing intracellular Ca2+ buffering capacity with BAPTA to prevent the increase in somal [Ca2+]i.

    Topics: Animals; Cadmium; Calcium; Cell Line, Tumor; Cell Survival; Chelating Agents; Drug Interactions; Egtazic Acid; Enzyme Inhibitors; Fluorescent Dyes; Intracellular Fluid; Neurites; Neuroblastoma; Neurons; Potassium; Rats; Ryanodine; Thapsigargin; Time Factors; Trauma, Nervous System

2004
Possible involvement of both endoplasmic reticulum-and mitochondria-dependent pathways in thapsigargin-induced apoptosis in human neuroblastoma SH-SY5Y cells.
    Journal of pharmacological sciences, 2003, Volume: 92, Issue:3

    Recently, it has been shown that endoplasmic reticulum (ER) stress causes apoptosis. However, the mechanism of the ER stress-dependent pathway is not fully understood. In human neuroblastoma SH-SY5Y cells, we detected a caspase-12-like protein that has a molecular mass (approximately 60 kDa) similar to that of mouse caspase-12. Thapsigargin, an inhibitor of ER-associated Ca(2+)-ATPase, induced the degradation of caspase-12-like protein. In addition, the degradation of caspases-9 and -3, cleavage of poly(ADP-ribose) polymerase, DNA fragmentation, and cell death were also observed. Pretreatment with phorbol-12-myristate-13-acetate, which induces the expression of antiapoptotic Bcl-2, inhibited thapsigargin-induced degradation of caspases-9 and -3, but not caspase-12-like protein degradation. A caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp(OCH(3))-CH(2)F, inhibited the degradation of caspase-12-like protein, but not that of caspases-9 and -3. These results suggest that thapsigargin may induce the activation of both ER- and mitochondria-dependent pathways in human SH-SY5Y cells.

    Topics: Apoptosis; Caspases; Cell Line, Tumor; Endoplasmic Reticulum; Humans; Mitochondria; Neuroblastoma; Signal Transduction; Thapsigargin

2003
Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activation.
    The Journal of biological chemistry, 2002, Nov-22, Volume: 277, Issue:47

    Stress of the endoplasmic reticulum (ER), which is associated with many neurodegenerative conditions, can lead to the elimination of affected cells by apoptosis through only partially understood mechanisms. Thapsigargin, which causes ER stress by inhibiting the ER Ca(2+)-ATPase, was found to not only activate the apoptosis effector caspase-3 but also to cause a large and prolonged increase in the activity of glycogen synthase kinase-3beta (GSK3beta). Activation of GSK3beta was obligatory for thapsigargin-induced activation of caspase-3, because inhibition of GSK3beta by expression of dominant-negative GSK3beta or by the GSK3beta inhibitor lithium blocked caspase-3 activation. Thapsigargin treatment activated GSK3beta by inducing dephosphorylation of phospho-Ser-9 of GSK3beta, a phosphorylation that normally maintains GSK3beta inactivated. Caspase-3 activation induced by thapsigargin was blocked by increasing the phosphorylation of Ser-9-GSK3beta with insulin-like growth factor-1 or with the phosphatase inhibitors okadaic acid and calyculin A, but the calcineurin inhibitors FK506 and cyclosporin A were ineffective. Insulin-like growth factor-1, okadaic acid, calyculin A, and lithium also protected cells from two other inducers of ER stress, tunicamycin and brefeldin A. Thus, ER stress activates GSK3beta through dephosphorylation of phospho-Ser-9, a prerequisite for caspase-3 activation, and this process is amenable to pharmacological intervention.

    Topics: Anti-Bacterial Agents; Apoptosis; Brefeldin A; Calcineurin; Calcineurin Inhibitors; Caspase 3; Caspases; Endoplasmic Reticulum; Enzyme Activation; Enzyme Inhibitors; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Hippocampus; Humans; Insulin-Like Growth Factor I; Lithium Chloride; Neuroblastoma; Neuroprotective Agents; Phosphorylation; Proteins; Signal Transduction; Thapsigargin; Tumor Cells, Cultured; Tunicamycin

2002
Depletion of intracellular calcium stores is toxic to SH-SY5Y neuronal cells.
    Brain research, 2002, Jan-11, Volume: 924, Issue:2

    Inhibiting Ca(2+) uptake by the sarcoendoplasmic reticular Ca(2+)-ATPase pump (SERCA) causes release of Ca(2+) from the endoplasmic reticulum (ER), increased cytosolic Ca(2+) ([Ca(2+)](cyt)) and depletion of ER Ca(2+) stores. These studies were designed to test the effects of SERCA inhibition on neuronal viability, using as a model the human neuroblastoma cell line, SH-SY5Y. Continuous exposure to the SERCA inhibitor thapsigargin (TG) decreased SH-SY5Y viability to <30% after 48 h exposure, and produced DNA laddering. Two other SERCA inhibitors, BHQ and cyclopiazonic acid CPA, were similarly toxic, although at 1000-fold higher concentrations. BHQ and CPA toxicity was prevented by removing drug within several hours, whereas TG toxicity was essentially irreversible. All three SERCA inhibitors caused an increase in [Ca(2+)](cyt) that was partially blocked by the ryanodine receptor inhibitors, dantrolene and DHBP. Pretreatment with 40 microM dantrolene gave substantial protection against TG- or BHQ-induced cell death but it did not inhibit death from staurosporine, which does not cause release of ER Ca(2+). DHBP (20-100 microM) also gave partial protection against TG toxicity, as did ruthenium red (2 microM), but not ryanodine (10 microM). Inhibition of capacitative Ca(2+) entry with EGTA or LaCl(3) or low extracellular Ca(2+), or chelation of [Ca(2+)](cyt) with BAPTA-AM, failed to inhibit TG toxicity, although they prevented increases in [Ca(2+)](cyt) caused by TG. Taken together, these data suggest that toxicity caused by SERCA inhibition in SH-SY5Y cells is caused by ER Ca(2+) depletion, which triggers an apparent apoptotic pathway.

    Topics: Apoptosis; Brain Ischemia; Calcium; Calcium-Transporting ATPases; Cytosol; Dantrolene; Egtazic Acid; Endoplasmic Reticulum; Enzyme Inhibitors; Humans; Hydroquinones; Indoles; Muscle Relaxants, Central; Neuroblastoma; Neurons; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Sesquiterpenes; Staurosporine; Thapsigargin; Tumor Cells, Cultured

2002
Regulation of intracellular calcium in N1E-115 neuroblastoma cells: the role of Na(+)/Ca(2+) exchange.
    American journal of physiology. Cell physiology, 2002, Volume: 282, Issue:5

    In fura 2-loaded N1E-115 cells, regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) following a Ca(2+) load induced by 1 microM thapsigargin and 10 microM carbonylcyanide p-trifluoromethyoxyphenylhydrazone (FCCP) was Na(+) dependent and inhibited by 5 mM Ni(2+). In cells with normal intracellular Na(+) concentration ([Na(+)](i)), removal of bath Na(+), which should result in reversal of Na(+)/Ca(2+) exchange, did not increase [Ca(2+)](i) unless cell Ca(2+) buffer capacity was reduced. When N1E-115 cells were Na(+) loaded using 100 microM veratridine and 4 microg/ml scorpion venom, the rate of the reverse mode of the Na(+)/Ca(2+) exchanger was apparently enhanced, since an approximately 4- to 6-fold increase in [Ca(2+)](i) occurred despite normal cell Ca(2+) buffering. In SBFI-loaded cells, we were able to demonstrate forward operation of the Na(+)/Ca(2+) exchanger (net efflux of Ca(2+)) by observing increases (approximately 6 mM) in [Na(+)](i). These Ni(2+) (5 mM)-inhibited increases in [Na(+)](i) could only be observed when a continuous ionomycin-induced influx of Ca(2+) occurred. The voltage-sensitive dye bis-(1,3-diethylthiobarbituric acid) trimethine oxonol was used to measure changes in membrane potential. Ionomycin (1 microM) depolarized N1E-115 cells (approximately 25 mV). This depolarization was Na(+) dependent and blocked by 5 mM Ni(2+) and 250-500 microM benzamil. These data provide evidence for the presence of an electrogenic Na(+)/Ca(2+) exchanger that is capable of regulating [Ca(2+)](i) after release of Ca(2+) from cell stores.

    Topics: Animals; Brain Neoplasms; Calcium; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Enzyme Inhibitors; Ionomycin; Ionophores; Membrane Potentials; Mice; Neuroblastoma; Nickel; Ouabain; Scorpion Venoms; Sodium; Sodium-Calcium Exchanger; Thapsigargin; Tumor Cells, Cultured; Veratridine

2002
Calcium and voltage-dependent alterations of cell volume in neuroblastomaxglioma hybrid NG108-15 cells.
    Pflugers Archiv : European journal of physiology, 2002, Volume: 444, Issue:1-2

    Intracellular calcium ([Ca2+](i)), cell volume, membrane potential and currents were measured in neuroblastomaxglioma hybrid cells to gain insight into how [Ca2+](i) controls cell volume. [Ca2+](i) was increased by fluid shear stress, mechanical stimulation of the cells, the Ca2+ ionophore A23187, caffeine and thapsigargin. The increase in [Ca2+](i) induced by mechanical stimulation was decreased by about 50% by caffeine and abolished after incubation of the cells in a Ca2+-free solution. Mechanical stimulation by stirring the cell suspension induced cell shrinkage that was abolished by caffeine, but induced cell swelling in Ca2+-free solution. In the presence of caffeine, A23187 induced cell shrinkage whereas thapsigargin induced cell swelling. Both cell volume changes were inhibited by the Cl- channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid. The cells were hyperpolarized by fluid shear stress and A23187 and depolarized by caffeine, thapsigargin and intracellular EGTA. Under all these conditions, the membrane input resistance was decreased. Voltage-clamp experiments suggested that, in addition to an increased anionic current, fluid shear stress and A23187 increased a K+ current, whereas caffeine and intracellular Ca2+ chelation increased a non-selective cation current and thapsigargin increased both a K+ and a non-selective cation current. Taken together, these results suggest that, if cell volume is closely dependent on [Ca2+](i) and the activity of Cl- channels, its relative value is dependent on the ionic selectivity of co-activated channels and the membrane potential.

    Topics: Brain Neoplasms; Caffeine; Calcimycin; Calcium; Cell Size; Chloride Channels; Electric Stimulation; Electrophysiology; Glioma; Humans; Hybrid Cells; Ion Channels; Ionophores; Membrane Potentials; Neuroblastoma; Nitrobenzoates; Patch-Clamp Techniques; Phosphodiesterase Inhibitors; Physical Stimulation; Thapsigargin; Tumor Cells, Cultured

2002
Resistance to induced apoptosis in the human neuroblastoma cell line SK-N-SH in relation to neuronal differentiation. Role of Bcl-2 protein family.
    European journal of biochemistry, 2001, Volume: 268, Issue:5

    Much evidence suggests that apoptosis plays a crucial role in cell population homeostasis that depends on the expression of various genes implicated in the control of cell life and death. The sensitivity of human neuroblastoma cells SK-N-SH to undergo apoptosis induced by thapsigargin was examined. SK-N-SH were previously differentiated into neuronal cells by treatments with retinoic acid (RA), 4 beta-phorbol 12-myristate 13-acetate (PMA) which increases protein kinase C (PKC) activity, and staurosporine which decreases PKC activity. Neuronal differentiation was evaluated by gamma-enolase, microtubule associated protein 2 (MAP2) and synaptophysin immunocytochemistry. The sensitivity of the cells to thapsigargin-induced apoptosis was evaluated by cell viability and nuclear fragmentation (Hoechst 33258) and compared with pro-(Bcl-2, Bcl-x(L)) and anti-apoptotic (Bax, Bak) protein expression of the Bcl-2 family. Cells treated with RA and PMA were more resistant to apoptosis than controls. Conversely, the cells treated with staurosporine were more susceptible to apoptosis. In parallel with morphological modifications, the expression of inhibitors and activators of apoptosis was directly dependent upon the differentiating agent used. Bcl-2 expression was strongly increased by PMA and drastically decreased by staurosporine as was Bcl-x(L) expression. Bax and Bak expression were not significantly modified. These results demonstrate that drugs that modulate PKC activity may induce a modification of Bcl-2 expression as well as resistance to the apoptotic process. Furthermore, the expression of Bcl-2 was reduced by toxin B from Clostridium difficile and, to a lesser extent, by wortmannin suggesting a role of small G-protein RhoA and PtdIns3 kinase in the control of Bcl-2 expression. Our data demonstrate a relationship between the continuous activation of PKC, the expression of Bcl-2 protein family and the resistance of differentiated SK-N-SH to apoptosis.

    Topics: Androstadienes; Apoptosis; Bacterial Proteins; Bacterial Toxins; bcl-X Protein; Biomarkers; Cell Differentiation; Cell Size; DNA Fragmentation; Gene Expression Regulation; Humans; Microtubule-Associated Proteins; Neuroblastoma; Neurons; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphopyruvate Hydratase; Protein Kinase C; Proto-Oncogene Proteins c-bcl-2; rhoA GTP-Binding Protein; Signal Transduction; Staurosporine; Synaptophysin; Tetradecanoylphorbol Acetate; Thapsigargin; Tretinoin; Tumor Cells, Cultured; Wortmannin

2001
Calcium/calmodulin-dependent protein kinase inhibition potentiates thapsigargin-mediated cell death in SH-SY5Y human neuroblastoma cells.
    Neuroscience letters, 2001, Mar-30, Volume: 301, Issue:2

    We previously demonstrated a loss in Ca(2+)/Calmodulin-dependent protein kinase (CaM kinase) activity in SH-SY5Y undergoing thapsigargin-mediated apoptosis. To extend that finding we report that CaM kinase inhibition potentiates thapsigargin-mediated cell death. CaM kinase inhibitor KN93 on its own exhibits little toxicity up to 10 mM, as measured by release of lactate dehydrogenase (LDH) into the culture medium. In SH-SY5Y cells pretreated with KN93 and the non-selective protein kinase inhibitor k252a and then treated with 2 mM thapsigargin, loss of viability is significantly greater than in cells treated with thapsigargin alone. Pretreatment with the pan-caspase inhibitor Z-D-DCB prevented the thapsigargin-mediated increase in LDH release. Furthermore, thapsigargin-induced caspase-3-like activation, demonstrated by poly(ADP)ribose polymerase cleavage and pro-caspase-3 processing, was elevated in the presence of KN93.

    Topics: Apoptosis; Aspartic Acid; Benzylamines; Calcium-Calmodulin-Dependent Protein Kinases; Carbazoles; Caspase 3; Caspase Inhibitors; Caspases; Cell Survival; Enzyme Inhibitors; Humans; Indole Alkaloids; Neuroblastoma; Neurons; Protease Inhibitors; Sulfonamides; Thapsigargin; Tumor Cells, Cultured

2001
Inositol 1,4,5-trisphosphate-independent calcium signalling by platelet-derived growth factor in the human SH-SY5Y neuroblastoma cell.
    Cell calcium, 2001, Volume: 30, Issue:2

    In adherent SH-SY5Y human neuroblastoma cells, activation of G-protein-coupled muscarinic M3 receptors evoked a biphasic elevation of both intracellular [Ca(2+)] ([Ca(2+)]i) and inositol-1,4,5-trisphosphate (D-Ins(1,4,5)P3) mass. In both cases, temporal profiles consisted of rapid transient elevations followed by a decline to a lower, yet sustained level. In contrast, platelet-derived growth factor (PDGF), a receptor tyrosine kinase agonist acting via PDGF receptor b chains in these cells, elicited a slow and transient elevation of [Ca(2+)]i that returned to basal levels within 5 to 10 min with no evidence of inositol phosphate generation. Full responses for either receptor type required intracellular and extracellular Ca(2+) and mobilization of a shared thapsigargin-sensitive intracellular Ca(2+) store. Strategies that affected the ability of D-Ins(1,4,5)P3 to interact with the Ins(1,4,5)P3-receptor demonstrated an Ins(1,4,5)P3-dependency of the muscarinic receptor-mediated elevation of [Ca(2+)]i but showed that PDGF-mediated elevations of [Ca(2+)]i are Ins(1,4,5)P3-independent in these cells.

    Topics: Calcium; Cell Adhesion; Down-Regulation; Enzyme Activation; Enzyme Inhibitors; Humans; Inositol 1,4,5-Trisphosphate; Neuroblastoma; Phosphotransferases (Alcohol Group Acceptor); Platelet-Derived Growth Factor; Receptors, Muscarinic; Signal Transduction; Thapsigargin; Thimerosal; Time Factors; Tumor Cells, Cultured

2001
Effect of the neuroprotective agent riluzole on intracellular Ca2+ levels in IMR32 neuroblastoma cells.
    Archives of toxicology, 2001, Volume: 75, Issue:4

    Riluzole is an effective neuroprotective drug. Its effect on intracellular free Ca2+ levels ([Ca2+]i) has not been explored. This study examined the effect of riluzole on [Ca2+]i in IMR32 neuroblastoma cells using fura-2 as a Ca2+ probe. Riluzole 0.1-1 mM increased [Ca2+]i in a concentration-dependent manner. Removal of extracellular Ca2+ inhibited the response by 52 +/- 5%. The [Ca2+]i increase induced by 0.2 mM riluzole was unaltered by 0.1 mM La3+ or 10 microM verapamil, but was inhibited by 51 +/- 4% by 10 microM nifedipine. In Ca2+-free medium, pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) reduced the 0.2 mM riluzole-induced Ca2+ release by 44 +/- 3%; this reduction was augmented to 66 +/- 5% by additionally depleting the Ca2+ stores in the Golgi complex with 50 microM brefeldin A. Inhibition of inositol 1,4,5-trisphosphate formation by 2 microM U73122, a phospholipase C inhibitor, did not affect Ca2+ release induced by 0.2 microM riluzole. It was concluded that the neuroprotective agent riluzole increased [Ca2+]i in IMR32 neuroblastoma cells concentration-dependently by releasing Ca2+ from multiple stores in an inositol 1,4,5-trisphosphate-independent manner and also by inducing nifedipine-sensitive Ca2+ influx.

    Topics: Animals; Brefeldin A; Calcium; Calcium Channel Blockers; Carbonyl Cyanide m-Chlorophenyl Hydrazone; Cell Line; Dogs; Enzyme Inhibitors; Fura-2; Glioma; Humans; Ionophores; Kidney; Liver Neoplasms; Neuroblastoma; Neurons; Neuroprotective Agents; Protein Synthesis Inhibitors; Riluzole; Thapsigargin; Tumor Cells, Cultured

2001
B103 neuroblastoma cells predominantly express endothelin ET(B) receptor; effects of extracellular Ca(2+) influx on endothelin-1-induced mitogenesis.
    European journal of pharmacology, 2001, Aug-17, Volume: 425, Issue:3

    We sought to examine the effects of endothelin-1 on the intracellular free Ca(2+) concentration ([Ca(2+)](i)) and mitogenic response in the neuroblastoma cell line, B103 (B103 cells). The results obtained from an [125I] endothelin-1 binding assay demonstrated that B103 cells express the endothelin receptor. The B(max) and K(d) values for [125I]endothelin-1 binding were 70+/-36 fmol/mg protein and 52+/-13 pM, respectively. Endothelin-1 failed to stimulate cAMP formation, but it did inhibit forskolin-induced cAMP formation. Endothelin-1 also stimulated the accumulation of [3H]inositol phosphates. These results indicate that the endothelin receptor in B103 cells couples with G(i) and G(q) but not with G(s). Monitoring of [Ca(2+)](i) showed that endothelin-1 evoked a transient increase in [Ca(2+)](i); this remained even in the absence of extracellular Ca(2+). However, no sustained, endothelin-1-induced increase in [Ca(2+)](i) due to extracellular Ca(2+) influx was detected. The endothelin B receptor-selective antagonist, 2,6-Dimethylpiperidinecarbonyl-gamma-Methyl-Leu-N(in)-[Methoxycarbonyl]-D-Trp-D-Nle (BQ 788), abolished the endothelin-1-induced increase in [Ca(2+)](i), while the endothelin ET(A) receptor-selective antagonist, cyclo-D-Asp-Pro-D-Val-Leu-D-Trp (BQ 123), failed to inhibit it. These results indicate that B103 cells express endothelin ET(B) receptor or an endothelin ET(B)-like receptor predominantly and have no Ca(2+) channels activated by endothelin-1. Endothelin-1 activated mitogen-activated protein kinase in B103 cells. However, based on the data for 3-(4,5-dimethy-2-thiazolyl)-2,5-diphenyl tetrazolium bromide, [3H]thymidine incorporation, and apoptosis screening assays, endothelin-1 induces neither mitogenesis nor apoptosis. These results suggest that endothelin-1 has no role in the mitogenic response in B103 cells, and this is consistent with the notion that an endothelin-1-induced sustained increase in [Ca(2+)](i) plays a role in endothelin-1-induced cell proliferation.

    Topics: Animals; Apoptosis; Calcium; Cell Division; Cyclic AMP; Dose-Response Relationship, Drug; Endothelin-1; Inositol Phosphates; Iodine Radioisotopes; Mitogen-Activated Protein Kinases; Neuroblastoma; Receptor, Endothelin B; Receptors, Endothelin; Thapsigargin; Tritium; Tumor Cells, Cultured

2001
Mitochondrial DNA-depleted neuroblastoma (Rho degrees) cells exhibit altered calcium signaling.
    Biochimica et biophysica acta, 2000, Apr-17, Volume: 1496, Issue:2-3

    To investigate the role of chronic mitochondrial dysfunction on intracellular calcium signaling, we studied basal and stimulated cytosolic calcium levels in SH-SY5Y cells and a derived cell line devoid of mitochondrial DNA (Rho degrees ). Basal cytosolic calcium levels were slightly but significantly reduced in Rho degrees cells. The impact of chronic depletion of mitochondrial DNA was more evident following exposure of cells to carbachol, a calcium mobilizing agent. Calcium transients generated in Rho degrees cells following application of carbachol were more rapid than those in SH-SY5Y cells. A plateau phase of calcium recovery during calcium transients was present in SH-SY5Y cells but absent in Rho degrees cells. The rapid calcium transients in Rho degrees cells were due, in part, to increased reliance on Na(+)/Ca(2+) exchange activity at the plasma membrane and the plateau phase in calcium recovery in SH-SY5Y cells was dependent on the presence of extracellular calcium. We also examined whether mitochondrial DNA depletion influenced calcium responses to release of intracellular calcium stores. Rho degrees cells showed reduced responses to the uncoupler, FCCP, and the sarcoplasmic reticulum calcium ATPase inhibitor, thapsigargin. Acute exposure of SH-SY5Y cells to mitochondrial inhibitors did not mimic the results seen in Rho degrees cells. These results suggest that cytosolic calcium homeostasis in this neuron-like cell line is significantly altered as a consequence of chronic depletion of mitochondrial DNA.

    Topics: Calcium; Calcium Signaling; Carbachol; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Cytological Techniques; Cytosol; DNA; Electron Transport; Fluorescent Dyes; Homeostasis; Humans; Membrane Potentials; Microscopy, Electron; Mitochondria; Mitochondrial Myopathies; Neuroblastoma; Neurodegenerative Diseases; Thapsigargin; Tumor Cells, Cultured

2000
Effects of the immunosuppressant FK506 on intracellular Ca2+ release and Ca2+ accumulation mechanisms.
    The Journal of physiology, 2000, Jun-15, Volume: 525 Pt 3

    The immunophilin FKBP12 associates with intracellular Ca2+ channels and this interaction can be disrupted by the immunosuppressant FK506. We have investigated the effect of FK506 on Ca2+ release and Ca2+ uptake in permeabilized cell types. Changes in medium free [Ca2+] were detected by the fluorescent Ca2+ indicator fluo-3 in digitonin-permeabilized SH-SY5Y human neuroblastoma cells, DT40 and R23-11 (i.e. triple inositol 1,4,5-trisphosphate (IP3) receptor knockout cells) chicken B lymphocytes and differentiated and undifferentiated BC3H1 skeletal muscle cells. 45Ca2+ fluxes were studied in saponin-permeabilized A7r5 rat smooth muscle cells. Addition of FK506 to permeabilized SH-SY5Y cells led to a sustained elevation of the medium [Ca2+] corresponding to approximately 30 % of the Ca2+ ionophore A23187-induced [Ca2+] rise. This rise in [Ca2+] was not dependent on mitochondrial activity. This FK506-induced [Ca2+] rise was related to the inhibition of the sarcoplasmic/endoplasmic reticulum Ca2+-Mg2+-ATPase (SERCA) Ca2+ pump. Oxalate-facilitated 45Ca2+ uptake in SH-SY5Y microsomes was inhibited by FK506 with an IC50 of 19 microM. The inhibition of the SERCA Ca2+ pump was not specific since several macrocyclic lactone compounds (ivermectin > FK506, ascomycin and rapamycin) were able to inhibit Ca2+ uptake activity. FK506 (10 microM) did not affect IP3-induced Ca2+ release in permeabilized SH-SY5Y and A7r5 cells, but enhanced caffeine-induced Ca2+ release via the ryanodine receptor (RyR) in differentiated BC3H1 cells. In conclusion, FK506 inhibited active Ca2+ uptake by the SERCA Ca2+ pump; in addition, FK506 enhanced intracellular Ca2+ release through the RyR, but it had no direct effect on IP3-induced Ca2+ release.

    Topics: Animals; Antiprotozoal Agents; Aorta; B-Lymphocytes; Biological Transport; Caffeine; Calcimycin; Calcium; Calcium Channels; Calcium Signaling; Calcium-Transporting ATPases; Chickens; Enzyme Inhibitors; Humans; Immunosuppressive Agents; Inositol 1,4,5-Trisphosphate Receptors; Ionophores; Ivermectin; Mice; Microsomes; Muscle, Smooth, Vascular; Neuroblastoma; Oxalates; Phosphodiesterase Inhibitors; Rats; Receptors, Cytoplasmic and Nuclear; Sirolimus; Spermine; Tacrolimus; Thapsigargin; Tumor Cells, Cultured

2000
Sarco-endoplasmic ATPase blocker 2,5-Di(tert-butyl)-1, 4-benzohydroquinone inhibits N-, P-, and Q- but not T-, L-, or R-type calcium currents in central and peripheral neurons.
    Molecular pharmacology, 2000, Volume: 58, Issue:1

    The effects of 2,5-di(tert-butyl)-1,4-benzohydroquinone (tBHQ), a synthetic phenolic antioxidant and a blocker of the sarco-endoplasmic ATPase, were evaluated on low and high voltage-activated Ca(2+) currents (ICas) with rodent dorsal root ganglion, hippocampal, and motor neurons. In all cell types tested, tBHQ (IC(50) = 35 microM) blocked ICa at concentrations used to inhibit sarco-endoplasmic ATPase. This effect was specific to tBHQ because the other sarco-endoplasmic reticulum calcium ATPase pump inhibitors (thapsigargin and cyclopiazonic acid) had no effect. Selective blockade of the N-type current with omega-conotoxin GVIA and of P- (motoneuron) or Q-type currents (hippocampal neuron) with omega-agatoxin IVA indicated that tBHQ inhibited N, P, and Q types of ICa. tBHQ had no effect on nitrendipine-sensitive (L-type) and residual drug-resistant (R-type) ICa, nor on the low voltage-activated T-type ICa. Contrary to neuronal cells, the L-type ICa was inhibited by tBHQ in a differentiated mouse neuroblastoma and rat glioma hybrid cell line. Injection of cDNAs encoding the alpha1A, alpha1B, alpha1C, and alpha1E subunits into oocytes showed that tBHQ blocked ICas at the level of the pore-forming protein. This effect of tBHQ on ICa should be considered when interpreting results obtained with tBHQ used on neuronal preparations. It also may be useful for developing new strategies for the generation of more potent intracellular calcium transient inhibitors.

    Topics: Animals; Calcium; Calcium Channel Blockers; Calcium Channels; Calcium Channels, L-Type; Calcium Channels, N-Type; Calcium Channels, P-Type; Calcium Channels, Q-Type; Calcium Channels, R-Type; Calcium Channels, T-Type; Calcium-Transporting ATPases; Cells, Cultured; DNA, Complementary; Endoplasmic Reticulum; Enzyme Inhibitors; Ganglia, Spinal; Glioma; Hippocampus; Hybrid Cells; Hydroquinones; Mice; Motor Neurons; Neuroblastoma; Rats; Rats, Sprague-Dawley; Thapsigargin

2000
Caspase-mediated proteolytic activation of calcineurin in thapsigargin-mediated apoptosis in SH-SY5Y neuroblastoma cells.
    Archives of biochemistry and biophysics, 2000, Jul-15, Volume: 379, Issue:2

    We previously demonstrated a loss in calmodulin (CaM)-dependent protein kinase activity in SH-SY5Y cells undergoing thapsigargin-mediated apoptosis, (K. M. McGinnis et al., 1998, J. Biol. Chem. 273, 19993-20000). Here we demonstrate that the large subunit of the CaM-dependent protein phosphatase 2B (calcineurin) is fragmented during SH-SY5Y cell apoptosis to a major fragment of 45 kDa in a caspase inhibitor-sensitive manner. A 45-kDa fragment was also produced when purified calcineurin was digested with recombinant caspase-3. The major cleavage site was identified to be DFGD* G(386)ATAA, which removes the C-terminal CaM-binding and autoinhibitory regions from the catalytic domain. Phosphatase activity increased progressively with caspase-3 digestion, coupled with the eventual loss of CaM-dependency. Calcineurin-mediated dephosphorylation of NFATc was also detected in thapsigargin-treated cells. Last, calcineurin inhibitors FK506 and cypermethrin provided partial protection against thapsigargin-mediated apoptosis, suggesting that calcineurin overactivation contributes to thapsigargin-induced apoptosis.

    Topics: Amino Acid Sequence; Animals; Apoptosis; Binding Sites; Calcineurin; Calcineurin Inhibitors; Caspase 3; Caspase Inhibitors; Caspases; Cattle; DNA-Binding Proteins; Humans; Molecular Weight; Neuroblastoma; NFATC Transcription Factors; Nuclear Proteins; Peptide Fragments; Phosphorylation; Recombinant Proteins; Thapsigargin; Transcription Factors; Tumor Cells, Cultured

2000
Interaction between acylphosphatase and SERCA in SH-SY5Y cells.
    Molecular and cellular biochemistry, 2000, Volume: 211, Issue:1-2

    Ca2+ transport by sarco/endoplasmic reticulum, tightly coupled with the enzymatic activity of Ca2+ -dependent ATPase, controls the cell cycle through the regulation of genes operating in the critical G, to S checkpoint. Experimental studies demonstrated that acylphosphatase actively hydrolyses the phosphorylated intermediate of sarco/endoplasmic reticulum calcium ATPase (SERCA) and therefore enhances the activity of Ca2+ pump. In this study we found that SH-SY5Y neuroblastoma cell division was blocked by entry into a quiescent G0-like state by thapsigargin, a high specific SERCA inhibitor, highlighting the regulatory role of SERCA in cell cycle progression. Addition of physiological amounts of acylphosphatase to SY5Y membranes resulted in a significant increase in the rate of ATP hydrolysis of SERCA. In synchronized cells a concomitant variation of the level of acylphosphatase isoenzymes opposite to that of intracellular free calcium during the G1 and S phases occurs. Particularly, during G1 phase progression the isoenzymes content declined steadily and hit the lowest level after 6 h from G0 to G1 transition with a concomitant significant increase of calcium levels. No changes in free calcium and acylphosphatase levels upon thapsigargin inhibition were observed. Moreover, a specific binding between acylphosphatase and SERCA was demonstrated. No significant change in SERCA-2 expression was found. These findings suggest that the hydrolytic activity of acylphosphatase increase the turnover of the phosphoenzyme intermediate with the consequences of an enhanced efficiency of calcium transport across endoplasmic reticulum and a subsequent decrease in cytoplasmic calcium levels. A hypothesis about the modulation of SERCA activity by acylphosphatase during cell cycle in SY5Y cells in discussed.

    Topics: Acid Anhydride Hydrolases; Acylphosphatase; Amino Acid Substitution; Calcium; Calcium-Transporting ATPases; Cell Cycle; Culture Media, Serum-Free; Dose-Response Relationship, Drug; Enzyme Inhibitors; Flow Cytometry; Humans; Neuroblastoma; Precipitin Tests; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Thapsigargin; Tumor Cells, Cultured

2000
Cytosolic calmodulin is increased in SK-N-SH human neuroblastoma cells due to release of calcium from intracellular stores.
    Journal of neurochemistry, 1998, Volume: 70, Issue:1

    Muscarinic receptor stimulation elicits a redistribution of calmodulin (CaM) from the membrane fraction to cytosol in the human neuroblastoma cell line SK-N-SH. Increasing the intracellular Ca2+ concentration with ionomycin also elevates cytosolic CaM. The aim of this study was to investigate the roles of extracellular and intracellular Ca2+ pools in the muscarinic receptor-mediated increases in cytosolic CaM in SK-N-SH cells. Stimulus-mediated changes in intracellular Ca2+ were monitored in fura-2-loaded cells, and CaM was measured by radioimmunoassay in the 100,000-g cytosol and membrane fractions. The influx of extracellular Ca2+ normally seen with carbachol treatment in SK-N-SH cells was eliminated by pretreatment with the nonspecific Ca2+ channel blocker Ni2+. Blocking the influx of extracellular Ca2+ had no effect on carbachol-mediated increases in cytosolic CaM (168 +/- 18% of control values for carbachol treatment alone vs. 163 +/- 28% for Ni2+ and carbachol) or decreases in membrane CaM. Similarly, removal of extracellular Ca2+ from the medium did not affect carbachol-mediated increases in cytosolic CaM (168 +/- 26% of control). On the other hand, prevention of the carbachol-mediated increase of intracellular free Ca2+ by pretreatment with the cell-permeant Ca2+ chelator BAPTA/AM did attenuate the carbachol-mediated increase in cytosolic CaM (221 +/- 37% of control without BAPTA/AM vs. 136 +/- 13% with BAPTA/AM). The effect of direct entry of extracellular Ca2+ into the cell by K+ depolarization was assessed. Incubation of SK-N-SH cells with 60 mM K+ elicited an immediate and persistent increase in intracellular free Ca2+ concentration, but there was no corresponding alteration in CaM localization. On the contrary, in cells where intracellular Ca2+ was directly elevated by thapsigargin treatment, cytosolic CaM was elevated for at least 30 min while particulate CaM was decreased. In addition, treatment with ionomycin in the absence of extracellular Ca2+, which releases Ca2+ from intracellular stores, induced an increase in cytosolic CaM (203 +/- 30% of control). The mechanism for the CaM release may involve activation of the alpha isozyme of protein kinase C, which was translocated from cytosol to membranes much more profoundly by thapsigargin than by K+ depolarization. These data demonstrate that release of Ca2+ from the intracellular store is important for the carbachol-mediated redistribution of CaM in human neuroblastoma SK-N-SH cells.

    Topics: Calcium; Calmodulin; Carbachol; Chelating Agents; Cytosol; Egtazic Acid; Extracellular Space; Humans; Intracellular Membranes; Isoenzymes; Neuroblastoma; Nickel; Protein Kinase C; Thapsigargin; Tissue Distribution; Tumor Cells, Cultured

1998
In vitro changes in capacitative Ca2+ entry in neuroblastoma X glioma NG108-15 cells.
    Neuroscience letters, 1998, Apr-24, Volume: 246, Issue:2

    Changes in capacitative Ca2+ entry were studied in neuroblastoma x glioma NG108-15 cells with fura-2 fluorescence measurements in the following three culture conditions. The application of thapsigargin (250 nM) with a Ca2+-free solution depleted intracellular Ca2+ stores and the capacitative Ca2+ entry was induced by the addition of extracellular Ca2+ in the cells cultured in the medium for proliferation. The capacitative Ca2+ entry decreased in the cells cultured in the medium for neuronal differentiation. When these cells resumed proliferation after changing the culture media to the initial medium for proliferation, the capacitative Ca2+ entry increased again and exceeded the level in the initial proliferation state. These results suggested that the capacitative Ca2+ entry occurred more intensely at the proliferation state than at the neuronally differentiated state.

    Topics: Animals; Calcium; Cell Differentiation; Cell Division; Culture Media; Glioma; Hybrid Cells; Neuroblastoma; Neurons; Thapsigargin

1998
Calcium/calmodulin-dependent protein kinase IV is cleaved by caspase-3 and calpain in SH-SY5Y human neuroblastoma cells undergoing apoptosis.
    The Journal of biological chemistry, 1998, Aug-07, Volume: 273, Issue:32

    We have previously demonstrated cleavage of alpha-spectrin by caspase-3 and calpain during apoptosis in SH-SY5Y neuroblastoma cells (Nath, R., Raser, K. J., Stafford, D., Hajimohammadreza, I., Posner, A., Allen, H., Talanian, R. V., Yuen, P., Gilbertsen, R. B., and Wang, K. K. (1996) Biochem. J. 319, 683-690). We demonstrate here that calcium/calmodulin-dependent protein kinase IV (CaMK IV) is cleaved during apoptosis by caspase-3 and calpain. We challenged SH-SY5Y cells with the pro-apoptotic agent thapsigargin. Western blot analysis revealed major CaMK IV breakdown products of 40, 38, and 33 kDa. Digestion of control SH-SY5Y lysate with purified caspase-3 produced a 38-kDa CaMK IV fragment; digestion with purified calpain produced a major fragment of 40 kDa. Pretreatment with carbobenzoxy-Asp-CH2OC(O)-2,6-dichlorobenzene or Z-Val-Ala-Asp-fluoromethylketone was able to block the caspase-3-mediated production of the 38-kDa fragment both in situ and in vitro. Calpain inhibitor II similarly blocked formation of the calpain-mediated 40-kDa fragment both in situ and in vitro. Digestion of recombinant CaMK IV by other caspase family members revealed that only caspase-3 produces a fragmentation pattern consistent to that seen in situ. The major caspase-3 and calpain cleavage sites are respectively identified as PAPD176*A and CG201*A, both within the CaMK IV catalytic domain. Furthermore, calmodulin-stimulated protein kinase activity decreases within 6 h in thapsigargin-treated SH-SY5Y. The loss of activity precedes cell death.

    Topics: Amino Acid Chloromethyl Ketones; Animals; Apoptosis; Aspartic Acid; Calcium-Calmodulin-Dependent Protein Kinase Type 4; Calcium-Calmodulin-Dependent Protein Kinases; Calpain; Caspase 3; Caspases; Chlorobenzoates; Cysteine Endopeptidases; Enzyme Inhibitors; Humans; Mice; Neuroblastoma; Peptide Fragments; Recombinant Proteins; Staurosporine; Thapsigargin; Tumor Cells, Cultured

1998
NPY upregulates genes containing cyclic AMP response element in human neuroblastoma cell lines bearing Y1 and Y2 receptors: involvement of CREB.
    Regulatory peptides, 1998, Sep-25, Volume: 75-76

    Four NPY receptor subtypes have been cloned, and shown to be coupled to both Ca2+ and cAMP. However, very little is known about the downstream elements mediating NPY actions. It has recently been demonstrated in our laboratory that intrahypothalamic (i.h.t.) administration of NPY induces hypothalamic CaM kinase activity, cyclic AMP response element binding protein (CREB) phosphorylation and cyclic AMP response element (CRE) binding activity in rat hypothalamic nuclear proteins. In the present study, we have investigated whether these changes in CRE binding transcriptional factors activated by NPY results in gene regulation using a human neuroblastoma cell line (SK-N-BE2). This cell line which expresses the Y2 subtype of NPY receptors was transfected with a fusion gene containing 1.305 kb of human CRF 5' flanking region with a perfect palindromic CRE site linked to firefly luciferase gene. NPY treatment increased CaM kinase II activity, CREB phosphorylation and CRE binding in these cells. In transfected cells, luciferase activity was also increased by NPY (1.8-4-fold) within 4 h of treatment. Moreover, forskolin (7-30-fold), which stimulates cAMP production, and thapsigargin (6-8-fold), which mobilizes intracellular calcium, also increased luciferase activity within 4 h of treatment. PMA (phorbol-12-myristate-13-acetate), an activator of protein kinase-C, induced luciferase activity by 1.8-fold. NPY augmented forskolin-stimulated luciferase activity from 11- to 15-fold, but had no significant effect on thapsigargin-induced luciferase activity. These findings suggest that activation of protein kinase A (PKA) or CaM kinase leads to the induction of fusion gene. NPY treatment upregulated fusion gene expression through Ca2+ pathway in SK-N-BE2 cell line. Pretreatment with CREB antisense, but not the sense oligodeoxynucleotides, inhibited forskolin-, thapsigargin- and NPY-stimulated luciferase activity. However, CREB sense or antisense oligodeoxynucleotide treatment had no effect on PMA-stimulated luciferase activity. Furthermore, NPY induced CRE binding activity and the expression of CRE containing Y1 receptor gene in SK-N-MC cell line. These findings suggest that NPY can upregulate CRE containing reporter gene including Y1 receptor gene and NPY-induced reporter gene regulation in SK-N-BE2 cells is mediated by intracellular Ca2+ and CREB protein.

    Topics: Animals; Artificial Gene Fusion; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Calcium-Calmodulin-Dependent Protein Kinases; Colforsin; Cyclic AMP; Cyclic AMP Response Element-Binding Protein; Cyclic AMP-Dependent Protein Kinases; Humans; Neuroblastoma; Neuropeptide Y; Phosphorylation; Rats; Receptors, Neuropeptide Y; RNA, Messenger; Thapsigargin; Transfection; Tumor Cells, Cultured; Up-Regulation

1998
Inhibition of bradykinin-induced calcium increase by phosphatase inhibitors in neuroblastoma x glioma hybrid NG108-15 cells.
    Journal of neurochemistry, 1997, Volume: 68, Issue:2

    Prior treatment of NG108-15 cells with phosphatase inhibitors including okadaic acid and calyculin A inhibited the elevation of cytosolic Ca2+ concentration ([Ca2+]i) induced by bradykinin by approximately 63%. This inhibition was dependent on the concentration of okadaic acid with an IC50 of 0.15 nM. Okadaic acid treatment only lowered the maximal response of [Ca2+]i increase and had no effect on the EC50 value for bradykinin regardless of the presence of extracellular Ca2+. Neither the capacity of 45Ca2+ accumulation within intracellular nonmitochondrial Ca2+ stores nor the magnitude of [Ca2+]i increase induced by thapsigargin was reduced by the treatment of okadaic acid. In contrast, the same phosphatase inhibitor treatment inhibited the bradykinin-evoked inositol 1,4,5-trisphosphate (IP3) generation, the Mn2+ influx, and the capacity of mitochondrial Ca2+ accumulation. Furthermore, the sensitivity of IP3 in the Ca2+ release was suppressed by okadaic acid pretreatment. Our results suggest that the reduction of bradykinin-induced [Ca2+]i rise by the promotion of protein phosphorylation was attributed to the reduced activity of phospholipase C, the decreased sensitivity to IP3, and the slowed rate of Ca2+ influx. Thus, phosphorylation plays a role in bradykinin-sensitive Ca2+ signaling cascade in NG108-15 cells.

    Topics: Animals; Bradykinin; Calcium; Dose-Response Relationship, Drug; Enzyme Inhibitors; Glioma; Hybrid Cells; Marine Toxins; Mice; Neuroblastoma; Okadaic Acid; Oxazoles; Phosphoric Monoester Hydrolases; Phosphorylation; Signal Transduction; Thapsigargin; Type C Phospholipases

1997
Restriction of microM-calcium-requiring calpain activation to the plasma membrane in human neuroblastoma cells: evidence for regionalized influence of a calpain activator protein.
    Journal of neuroscience research, 1997, Jun-15, Volume: 48, Issue:6

    Regulation of the microM-calcium-requiring form of calpain (mu calpain) was studied in SH-SY-5Y human neuroblastoma cells. Immunoblot analysis demonstrated that the vast majority of mu calpain is localized within cytosolic pools. Calpain activation was monitored as a function of autolysis within intact cells following calcium influx from the culture medium by calcium ionophores A23187 or ionomycin, or following release of calcium from intracellular stores by thapsigargin. Within intact neuronal cells, following an influx of calcium into the cytosolic from either extracellular or intracellular sources, mu calpain is preferentially activated at the plasma membrane as evidenced by autolytic generation of faster-migrating isoforms. By contrast, similar autolytic profiles for mu calpain in membrane or cytosolic fractions following addition of calcium were observed under cell-free conditions and within cells following death due to extended ionophore-mediated calcium influx. These differential activation profiles for cytosolic mu calpain within living cells and following cellular fractionation/cell death indicate the presence of a regulatory system within neuronal cells. As in previous studies in other systems, we demonstrate the presence of a calpain activator protein. Cycloheximide treatment depleted the autolytic capacity of membrane-associated mu calpain within 4-6 hr without a corresponding decline in total mu calpain protein levels, indicating that the activator protein undergoes rapid turnover in comparison to calpain; pulse-chase radiolabeling confirmed the half-life of mu calpain to exceed 24 hr. Our data suggest that this labile protein represents a major rate-limiting step for in situ calpain activation within neuronal cells, and that, given the tremendous latent mu calpain activity within the cytosol, the interplay of the activator protein and the endogenous inhibitor calpastatin are crucial for maintaining neuronal homeostasis.

    Topics: Calcimycin; Calcium; Calpain; Cell Membrane; Cycloheximide; Cytosol; Enzyme Activation; Enzyme Inhibitors; Enzyme Precursors; Half-Life; Humans; Ionomycin; Ionophores; Isoenzymes; Membrane Proteins; Neoplasm Proteins; Nerve Tissue Proteins; Neuroblastoma; Neurons; Protein Synthesis Inhibitors; Thapsigargin; Tumor Cells, Cultured

1997
Thapsigargin induces apoptosis in SH-SY5Y neuroblastoma cells and cerebrocortical cultures.
    Biochemistry and molecular biology international, 1997, Volume: 43, Issue:1

    Thapsigargin, a specific inhibitor of the endoplasmic reticular Ca(2+)-ATPase, has been used previously to mobilize calcium release from intracellular calcium stores. We now show that thapsigargin (1-10 microM) induces apoptosis in a neuroblastoma cell line (SH-SY5Y) and in fetal rat cerebrocortical cultures. Cell death measured by lactate dehydrogenase release was observed 24-48 hours after treatment with thapsigargin. In both cases, DNA extracts from thapsigargin treated cells showed laddering, typical of endonuclease-mediated internucleosomal cleavages. The presence of DNA fragments was also confirmed by an ELISA designed for detecting nucleosomes in apoptotic cells. Cycloheximide reduced the extent of DNA fragmentation and injury in thapsigargin-treated cells. Dantrolene, an inhibitor of calcium release from intracellular stores partially abolished the effect of thapsigargin, suggesting that the initial Ca2+ rise may be the signalling event in this apoptotic cell death pathway. We propose that thapsigargin-induced cell death in cultured neuronal cells may be a useful system to study the molecular and genetic events involved in apoptosis.

    Topics: Animals; Apoptosis; Calcium; Calcium-Transporting ATPases; Cerebral Cortex; Cycloheximide; Dantrolene; DNA Fragmentation; Endoplasmic Reticulum; Enzyme Inhibitors; Humans; Neuroblastoma; Neurons; Rats; Thapsigargin; Tumor Cells, Cultured

1997
Contrasting effects of phorbol ester and agonist-mediated activation of protein kinase C on phosphoinositide and Ca2+ signalling in a human neuroblastoma.
    The Biochemical journal, 1996, Jun-15, Volume: 316 ( Pt 3)

    The effects of protein kinase C (PKC) activation on muscarinic receptor-mediated phosphoinositide and Ca2+ signalling were examined in the human neuroblastoma, SH-SY5Y. Carbachol evoked rapid transient elevations of Ins(1,4,5)P3 and intracellular [Ca2+] followed by lower sustained elevations. Phorbol 12,13-dibutyrate (PDBu) preferentially attenuated transient phases. Removal of the transplasmalemmal Ca2+ gradient coupled with depletion of intracellular Ca2+ stores with thapsigargin also reduced carbachol-mediated Ins(1,4,5)P3 accumulation. Under these conditions, PDBu virtually abolished Ins(1,4,5)P3 responses to carbachol thereby implicating both Ca(2+)- and PKC-sensitive components. PDBu also reduced agonist-mediated accumulation of inositol phosphates and depletion of lipids, thereby eliminating an effect of PKC on Ins(1,4,5)P3 metabolism or phosphoinositide synthesis. In electroporated cells, PDBu inhibited Ins(1,4,5)P3 accumulation mediated by carbachol or guanosine 5'-[gamma-thio]-triphosphate, the latter indicating that some PDBu-sensitive elements were downstream of the receptor. The PKC inhibitor, Ro-318220, protected against PDBu but did not enhance responses to maximal concentrations of carbachol, indicating no feedback inhibition by agonist-activated PKC. Muscarinic antagonist activity of Ro-318220 complicated such assessment at low agonist concentrations. Carbachol or PDBu induced cytosol to membrane translocation of PKC alpha. This was faster and possibly greater with PDBu, which may explain the lack of feedback by agonist-activated PKC. These results indicate that, in SH-SY5Y cells, PDBu activation of PKC preferentially inhibits rapid muscarinic receptor-mediated phosphoinositide and Ca2+ responses via suppression of PtdIns(4,5)P2 hydrolysis. This is at least partially through inhibition of Gq-protein/phosphoinositidase C coupling. However, at least at high agonist concentrations, a major agonist-mediated PKC feedback is not present in these cells.

    Topics: Animals; Calcium; Calcium-Transporting ATPases; Carbachol; Cell Line; CHO Cells; Cricetinae; Cytosol; Enzyme Activation; Enzyme Inhibitors; Guanosine 5'-O-(3-Thiotriphosphate); Humans; Inositol 1,4,5-Trisphosphate; Isoenzymes; Kinetics; Lithium; N-Methylscopolamine; Neuroblastoma; Phorbol 12,13-Dibutyrate; Phosphatidylinositols; Protein Kinase C; Receptor, Muscarinic M3; Receptors, Muscarinic; Recombinant Proteins; Scopolamine Derivatives; Signal Transduction; Terpenes; Thapsigargin; Transfection; Tumor Cells, Cultured

1996
The delta-opioid receptor regulates activity of ryanodine receptors in the human neuroblastoma cell line SK-N-BE.
    Journal of neurochemistry, 1996, Volume: 67, Issue:6

    Recent studies have demonstrated that opioid agonists affect the cytosolic Ca2+ concentration ([Ca2+]i) either by regulating plasma membrane Ca(2+)-channel activity or by mobilizing intracellular Ca2+ stores. The present report documents the [Ca2+]i increase induced by opioid agonists in a human neuroblastoma cell line, SK-N-BE, expressing delta-opioid receptors. In the presence, as well as in the absence, of extracellular Ca2+, opioid agonists enhanced significantly [Ca2+]i, whereas carbachol, known to mobilize specifically inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ stores, acted only in the presence of extracellular Ca2+. The opioid-induced increase in [Ca2+]i was not affected by treatments modifying the trimeric Gl, Go, and Gs protein transduction mechanisms or the activity of adenylyl cyclase. The Ca(2+)-ATPase pump-inhibiting sesquiterpene lactone, thapsigargin, did not modify the opioid-induced [Ca2+]i response, whereas it abolished the effects of carbachol. The Ryana speciosa alkaloid, ryanodine, at concentrations known to block endoplasmic reticulum ryanodine receptors, decreased significantly the response to opioids without affecting the effects of carbachol. Thus, our results suggest that, in SK-N-BE cells, delta-opioid receptors mobilize Ca2+ from intracellular ryanodine-sensitive stores and the mechanism involved is independent of Gl/Go Gs proteins and protein kinase A activation.

    Topics: Calcium; Calcium Channels; Calmodulin-Binding Proteins; Carbachol; Enzyme Inhibitors; GTP-Binding Proteins; Humans; Inositol 1,4,5-Trisphosphate; Muscarinic Agonists; Muscle Proteins; Narcotics; Neuroblastoma; Receptors, Opioid, delta; Ryanodine; Ryanodine Receptor Calcium Release Channel; Thapsigargin; Tumor Cells, Cultured

1996
Ca2+ entry following store depletion in SH-SY5Y neuroblastoma cells.
    Brain research. Molecular brain research, 1996, Volume: 36, Issue:1

    Ca2+ entry following Ca2+ store depletion was examined in the human neuroblastoma cell line, SH-SY5Y, by measuring the concentration of intracellular free Ca2+ ([Ca2+]i) with fura-2. Application of the muscarinic agonist oxotremorine-M (oxo-M) caused an increase in [Ca2+]i. This consisted of a peak, mediated by release of Ca2+ from internal stores followed by a sustained plateau, mediated by Ca2+ entry across the plasma membrane. The Ca2+ entry resulted from depletion of intracellular Ca2+ stores This pathway was further characterized in the presence of thapsigargin, an inhibitor of the Ca2+ ATPase involved in replenishing IP3-sensitive stores. Stores were first depleted with oxo-M and thapsigargin in the absence of extracellular Ca2+. After washout of oxo-M, subsequent exposure to Ca2+ evoked reproducible increases in [Ca2+]i. Application of oxo-M plus Ca2+ had little effect on the increases in [Ca2+]i, indicating that in SH-SY5Y cells, agonist-dependent pathways contribute little to Ca2+ entry following store depletion. Mn2+, Sr2+ and Ba2+ were permeable through this pathway. Mn2+ and Ba2+ also showed slight permeability in the absence of store depletion. Ca2+ entry following store depletion was blocked by La3+ (IC50 = 75 nM) and by SKF 96365. La3+ blocked Mn2+ entry through the pathway activated by store depletion but did not affect basal Mn2+ permeability. These results indicate that SH-SY5Y neuroblastoma cells have an agonist-independent Ca2+ entry pathway activated by store depletion.

    Topics: Barium; Calcium; Cell Membrane Permeability; Imidazoles; Inositol 1,4,5-Trisphosphate; Lanthanum; Manganese; Muscarinic Agonists; Neuroblastoma; Neurons; Oxotremorine; Strontium; Thapsigargin; Tumor Cells, Cultured

1996
Intracellular calcium signals in response to bradykinin in individual neuroblastoma cells.
    The American journal of physiology, 1995, Volume: 269, Issue:4 Pt 1

    The Ca indicator fura 2 was used to study the modulation of cytoplasmic Ca by bradykinin (Bk) in single N1E-115 murine neuroblastoma cells. Increases in cytoplasmic Ca in response to Bk were mediated by the B2 receptor subtype. Responses to high concentrations of Bk (1-100 nM) were homogeneous and characterized by a rapidly rising transient that decayed to baseline in the continued presence of agonist, with a half-time of 15 s. Responses to low concentrations of Bk (100-500 pM) were more heterogeneous, with longer latencies and often with oscillations. Pretreatment with thapsigargin for 20 min prevented the Ca response, showing that the Ca change results from intracellular Ca release. Removal of external Ca had little effect on the response to Bk, indicating that the agonist does not activate Ca influx. The extent of Ca release and refilling after Bk was tested with ionomycin. A saturating dose of Bk (20 nM) mobilizes > 90% of stored Ca within 30 s, and this is replaced slowly. Replacement of external Na by N-methyl-D-glucamine to block Na/Ca exchange affected the Ca response, causing decreases in latency and in the period of Ca oscillations and increases in overall duration and peak amplitude of the response.

    Topics: Animals; Bradykinin; Calcium; Calcium-Transporting ATPases; Dose-Response Relationship, Drug; Intracellular Membranes; Mice; Muscarinic Agonists; Neuroblastoma; Osmolar Concentration; Sodium; Terpenes; Thapsigargin; Tumor Cells, Cultured

1995
Calcium requirement for cGMP production during muscarinic activation of N1E-115 neuroblastoma cells.
    The American journal of physiology, 1995, Volume: 269, Issue:4 Pt 1

    Muscarinic agonists elicit large increases in intracellular Ca2+ and guanosine 3',5'-cyclic monophosphate (cGMP) in N1E-115 neuroblastoma cells. Both signals are blocked in cells loaded with the Ca2+ buffer 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid showing that the increase in intracellular Ca2+ concentration ([Ca2+]i) is necessary to stimulate cGMP accumulation. Inhibition of nitric oxide synthase (NOS) blocks the cGMP response without affecting the peak amplitude of the intracellular Ca2+ signal, and it is concluded that Ca(2+)-dependent activation of NOS is required for cGMP production. cGMP accumulation is reduced by 60% when cells are bathed in Ca(2+)-free saline, but the peak change in [Ca2+]i is not affected. This suggests that Ca2+ influx is strongly coupled to the activation of cGMP production, even though it makes a smaller contribution to the intracellular Ca2+ signal than does Ca2+ release. Thapsigargin, which releases Ca2+ from intracellular stores, activates Ca2+ influx and increases cGMP. The cGMP increase is transient and follows approximately the same time course as Ca2+ store depletion. Ca2+ influx remains activated after store depletion, however, which indicates that influx alone cannot sustain cGMP production. It is concluded that summation of Ca2+ influx and Ca2+ release is necessary to reach a threshold Ca2+ level needed to stimulate cGMP accumulation. Because of the large contribution from Ca2+ influx, we suggest that NOS or a cofactor necessary for its activation may be located close to Ca2+ channels in the membrane.

    Topics: Animals; Buffers; Calcium; Calcium-Transporting ATPases; Chelating Agents; Cyclic GMP; Intracellular Membranes; Mice; Muscarine; Neuroblastoma; Nitric Oxide; Nitroprusside; Terpenes; Thapsigargin; Tumor Cells, Cultured

1995
Evidence for a Na+/Ca2+ exchanger in neuroblastoma x glioma hybrid NG108-15 cells.
    The Biochemical journal, 1995, Jul-15, Volume: 309 ( Pt 2)

    To determine whether NG108-15 cells contain a functional Na+/Ca2+ exchanger, we isotonically replaced extracellular Na+ with N-methyl-D-glucamine (NMG) and measured the effect on cytosolic Ca2+ concentration ([Ca2+]i) using the fluorescent Ca2+ indicator fura 2. Replacement with NMG alone had no effect on basal [Ca2+]i or the rise in [Ca2+]i evoked by 80 mM K+ or 10 microM bradykinin, but caused a larger [Ca2+]i increase when thapsigargin and carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) were added to the cells; this enhanced [Ca2+]i increase could be reversed by adding Na+ back to the bathing buffer. The elevation in [Ca2+]i induced by thapsigargin and FCCP was inversely proportional to extracellular Na+ concentration. Furthermore, the exchanger operated in the reverse mode, as measured by either [Ca2+]i change or 45Ca2+ uptake. An 810 bp cDNA fragment of the exchanger was amplified by PCR; it differed by a single amino acid residue from the corresponding segment of the rat brain Na+/Ca2+ exchanger. These data suggest that a functioning Na+/Ca2+ exchanger exists in NG108-15 cells.

    Topics: Base Sequence; Calcium; Calcium-Transporting ATPases; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Carrier Proteins; DNA Primers; DNA, Complementary; Glioma; Hybrid Cells; Molecular Sequence Data; Neuroblastoma; Sodium; Sodium-Calcium Exchanger; Terpenes; Thapsigargin; Tumor Cells, Cultured

1995
Mobilization of inositol 1,4,5-trisphosphate-sensitive Ca2+ stores supports bradykinin- and muscarinic-evoked release of [3H] noradrenaline from SH-SY5Y cells.
    Journal of neurochemistry, 1995, Volume: 64, Issue:3

    The human neuroblastoma cell line SH-SY5Y, maintained at confluence for 14 days, released [3H]-noradrenaline ([3H]NA) when stimulated with either the muscarinic receptor agonist methacholine or bradykinin. The major fraction of release was rapid, occurring in < 10 s, whereas nicotine-evoked release was slower. When the extracellular [Ca2+]e) was buffered to approximately 50-100 nM, release evoked by nicotine was abolished, whereas that in response to methacholine or bradykinin was reduced by approximately 50% with EC50 values of -5.46 +/- 0.05 M and -7.46 +/- 0.06 M (log 10), respectively. Methacholine and bradykinin also produced rapid elevations of both inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and intracellular free [Ca2+] ([Ca2+]i). These elevations were reduced at low [Ca2+]e and under these conditions the EC50 values for peak elevation of [Ca2+]i were -6.00 +/- 0.14 M for methacholine and -7.95 +/- 0.34 M for bradykinin (n = 3 for all EC50 determinations). At low [Ca2+]e, depletion of nonmitochondrial intracellular Ca2+ stores with the Ca(2+)-ATPase inhibitor thapsigargin produced a transient small elevation of [Ca2+]i and a minor release of [3H]NA. At low [Ca2+]e, thapsigargin abolished elevation of [Ca2+]i in response to methacholine and bradykinin and completely inhibited their stimulation of [3H]NA release. It is proposed, therefore, that Ca2+ release from Ins (1,4,5)P3-sensitive stores is a major trigger of methacholine- and bradykinin-evoked [3H]NA release in SH-SY5Y cells.

    Topics: Bradykinin; Calcium; Ganglia, Sympathetic; Humans; In Vitro Techniques; Inositol 1,4,5-Trisphosphate; Methacholine Chloride; Neuroblastoma; Nicotine; Norepinephrine; Terpenes; Thapsigargin; Tumor Cells, Cultured

1995
Methylmercury mobilizes Ca++ from intracellular stores sensitive to inositol 1,4,5-trisphosphate in NG108-15 cells.
    The Journal of pharmacology and experimental therapeutics, 1995, Volume: 272, Issue:3

    Fluorescence intensity was monitored from individual NG108-15 cells loaded with the Ca(++)-selective probe fura-2, and exposed to 2 microM methylmercury (MeHg). The initial effect of 2 microM MeHg was an elevation in intracellular Ca++ concentration ([Ca++]i), which was not blocked by lowering extracellular Ca++ (Ca++e), nifedipine (0.1 microM) or by Ni++ (1 mM). Addition of 100 microM Mn++ to Ca(++)-containing medium did not alter fluorescence intensity at either the Ca(++)-insensitive excitation wavelength of 360 nm or the Ca(++)-sensitive wavelength of 380 nm. Depolarization with K+ decreased the intensity at both wavelengths, indicating Mn++ entry. In the presence of Mn++, MeHg decreased the 380 nm, but not the 360 nm signal. Bradykinin (Bk) caused a transient increase in the fluorescence ratio, which was blocked by the endoplasmic reticulum Ca(++)-adenosine triphosphatase inhibitor thapsigargin. Pretreatment with Bk and thapsigargin reduced significantly the increase in ratio induced by MeHg from 21.9 +/- 3.4 to 6.9 +/- 1.8% of base line. Bk had no effect when applied after MeHg. Caffeine reduced the Bk-induced increase in [Ca++]i and the MeHg-induced increase in ratio from 21.9 +/- 3.4 to 9.0 +/- 2.1%. Thus, Bk, caffeine and MeHg all appear to release a common pool of intracellular calcium (Ca2+i). When applied after MeHg, Bk increased inositol 1,4,5-trisphosphate (IP3) by 305 +/- 27% compared to 270 +/- 29% in controls. Thus, MeHg did not induce Ca++ release by IP3 generation, nor did it block the effects of Bk by interfering with IP3 synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Animals; Bradykinin; Caffeine; Calcium; Calcium Channels; Calcium-Transporting ATPases; Cell Compartmentation; Cytoplasm; In Vitro Techniques; Inositol 1,4,5-Trisphosphate; Manganese; Methylmercury Compounds; Neuroblastoma; Neurons; Terpenes; Thapsigargin; Time Factors; Tumor Cells, Cultured

1995
Stimulation of platelet-activating factor (PAF) receptors increases inositol phosphate production and cytosolic free Ca2+ concentrations in N1E-115 neuroblastoma cells.
    Cell calcium, 1995, Volume: 17, Issue:6

    Platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine, PAF) has recently been recognized as an important mediator in the pathophysiology of brain injury. This study demonstrates that, in suspended populations of N1E-115 cells loaded with Indo-1, biologically relevant concentrations of PAF produce a rapid and transient elevation in cytosolic free calcium concentration ([Ca2+]i). Moreover, nanomolar concentrations of PAF increase [3H]-inositol phosphate production. Using lyso-PAF and the specific PAF-receptor antagonists BN52021 and BN50739, we show that these effects were mediated by stimulation of PAF receptors. Experiments performed in Ca2+ free medium show that PAF-induced [Ca2+]i increase is the result of an influx of Ca2+ and of the release of intracellular Ca2+ stores. Studies of Mn2+ influx argue in favour of additional pathways for the PAF-induced Ca2+ influx other than the pathway for the thapsigargin-induced Ca2+ influx. Using the whole-cell voltage-clamp technique, we observe that PAF induces an increase of Ltype Ca2+ current. However, the effects of La3+, nifedipine and KCl-induced depolarization on the PAF-induced [Ca2+]i increase suggest a minor participation of these voltage-gated Ca2+ channels in the response to PAF. Altogether the results point to the existence of a PAF-induced Ca2+ influx through receptor-operated Ca2+ permeant channels.

    Topics: Animals; Calcium; Calcium Channels; Calcium-Transporting ATPases; Carcinogens; Culture Media; Cytosol; Indoles; Inositol Phosphates; Lanthanum; Manganese; Mice; Neuroblastoma; Phosphatidylinositols; Platelet Activating Factor; Platelet Membrane Glycoproteins; Receptors, Cell Surface; Receptors, G-Protein-Coupled; Terpenes; Thapsigargin; Time Factors; Tumor Cells, Cultured

1995
Activation of phospholipase D in SH-SY5Y neuroblastoma cells: dependence on Ca2+ and protein kinase C.
    Biochemical Society transactions, 1995, Volume: 23, Issue:3

    Topics: Bradykinin; Calcium; Calcium-Transporting ATPases; Enzyme Activation; Enzyme Inhibitors; Humans; Indoles; Kinetics; Methacholine Chloride; Muscarinic Agonists; Neuroblastoma; Phospholipase D; Protein Kinase C; Terpenes; Thapsigargin; Tumor Cells, Cultured

1995
The relationship between depletion of intracellular Ca2+ stores and activation of Ca2+ current by muscarinic receptors in neuroblastoma cells.
    The Journal of general physiology, 1995, Volume: 106, Issue:5

    The relationship between the depletion of IP3-releasable intracellular Ca2+ stores and the activation of Ca(2+)-selective membrane current was determined during the stimulation of M1 muscarinic receptors in N1E-115 neuroblastoma cells. External Ca2+ is required for refilling Ca2+ stores and the voltage-independent, receptor-regulated Ca2+ current represents a significant Ca2+ source for refilling. The time course of Ca2+ store depletion was measured with fura-2 fluorescence imaging, and it was compared with the time course of Ca2+ current activation measured with nystatin patch voltage clamp. At the time of maximum current density (0.18 + .03 pA/pF; n = 48), the Ca2+ content of the IP3-releasable Ca2+ pool is reduced to 39 + 3% (n = 10) of its resting value. Calcium stores deplete rapidly, reaching a minimum Ca2+ content in 15-30 s. The activation of Ca2+ current is delayed by 10-15 s after the beginning of Ca2+ release and continues to gradually increase for nearly 60 s, long after Ca2+ release has peaked and subsided. The delay in the appearance of the current is consistent with the idea that the production and accumulation of a second messenger is the rate-limiting step in current activation. The time course of Ca2+ store depletion was also measured after adding thapsigargin to block intracellular Ca2+ ATPase. After 15 min in thapsigargin, IP3-releasable Ca2+ stores are depleted by > 90% and the Ca2+ current is maximal (0.19 + 0.05 pA/pF; n = 6). Intracellular loading with the Ca2+ buffer EGTA/AM (10 microM; 30 min) depletes IP3-releasable Ca2+ stores by between 25 and 50%, and it activates a voltage-independent inward current with properties similar to the current activated by agonist or thapsigargin. The current density after EGTA/AM loading (0.61 + 0.32 pA/pF; n = 4) is three times greater than the current density in response to agonist or thapsigargin. This could result from partial removal of Ca(2+)-dependent inactivation.

    Topics: Animals; Calcium; Calcium Channels; Carbachol; Chelating Agents; Egtazic Acid; Electrophysiology; Enzyme Inhibitors; Ganglia, Sympathetic; Inositol 1,4,5-Trisphosphate; Mice; Muscarinic Agonists; Neuroblastoma; Neurons; Receptors, Muscarinic; Second Messenger Systems; Terpenes; Thapsigargin; Tumor Cells, Cultured

1995
Retinoic acid-stimulated intercellular adhesion molecule-1 expression on SK-N-SH cells: calcium/calmodulin-dependent pathway.
    Cancer research, 1994, Aug-01, Volume: 54, Issue:15

    Intercellular adhesion molecule-1 (ICAM-1) is an important cell surface adhesion receptor of the immune system. Its cell surface expression on a wide variety of cells, including cancer cells, is regulated by various proinflammatory cytokines. In the present study, we investigated the role of calcium (Ca2+) and calmodulin (CaM) in the retinoic acid and gamma-interferon (IFN-gamma) signaling in the human neuroblastoma cell line SK-N-SH for up-regulating ICAM-1 expression. A 24-h incubation in the presence of Ca(2+)-mobilizing agents (A23187 and thapsigargin) resulted in the induction of ICAM-1 expression. Both Ca(2+)-mobilizing agents stimulated ICAM-1 expression additively to IFN-gamma but not to retinoic acid, suggesting that IFN-gamma does not use Ca2+ to stimulate ICAM-1, whereas retinoic acid might use it in part. As a second messenger, Ca2+ can be coupled with calmodulin. Using calmodulin inhibitors (W7 and calmidazolium), we found that retinoic acid-stimulated, A23187-stimulated, and thapsigargin-stimulated but not FIN-gamma-stimulated ICAM-1 were inhibited. Calmodulin signaling elicited by retinoic acid was an early event occurring within the first h of retinoic acid treatment, providing evidence that they may both be coupled to regulate gene expression. Using a novel CaM kinase II inhibitor, KN-62, we demonstrated that retinoic acid stimulated ICAM-1 expression in a CaM kinase II-dependent fashion. The mechanisms whereby CaM kinase II mediates retinoic acid activity on ICAM-1 expression remain to be elucidated.

    Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; Calcimycin; Calcium; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Calcium-Calmodulin-Dependent Protein Kinases; Calmodulin; Cell Adhesion Molecules; Enzyme Activation; Humans; Imidazoles; Intercellular Adhesion Molecule-1; Interferon-gamma; Isoquinolines; Neuroblastoma; Piperazines; Protein Kinase C; Sulfonamides; Terpenes; Thapsigargin; Tretinoin; Tumor Cells, Cultured; Up-Regulation

1994
Thapsigargin selectively stimulates synthesis of phosphatidylglycerol in N1E-115 neuroblastoma cells and phosphatidylinositol in C6 glioma cells.
    Biochimica et biophysica acta, 1994, Nov-17, Volume: 1215, Issue:1-2

    Phospholipid metabolism was studied in N1E-115 neuroblastoma and C6 glioma cells exposed to thapsigargin, a selective inhibitor of endoplasmic reticulum Ca(2+)-ATPase that raises the cytosolic free Ca2+ concentration [Ca2+]i. Thapsigargin caused only a transient increase of [Ca2+]i (< 1 min) in N1E-115 cells similar in magnitude and duration to agonist-induced calcium release mediated by inositol trisphosphate. Sustained elevation of [Ca2+]i due to influx of extracellular calcium, as occurs in most other cell lines including C6 cells, did not occur in N1E-115 cells. Increased uptake of inorganic phosphate (Pi) associated calcium influx was observed in C6 but not in N1E-115 cells. Thapsigargin affected phospholipid synthesis in both cell lines, most likely by inhibiting phosphatidic acid phosphohydrolase as indicated by diversion of [3H]oleic acid incorporation from triacylglycerol to phospholipid synthesis and stimulation of [32P]Pi incorporation into anionic phospholipids at the expense of phosphatidylcholine synthesis. The response to increased phosphatidate/phosphatidyl-CMP availability was cell specific. Thapsigargin (> 100 nM) selectively stimulated phosphatidylglycerol synthesis 20-30-fold in N1E-115 neuroblastoma cells while phosphatidylinositol synthesis was increased < 2-fold. In contrast, phosphatidylglycerol was not affected in C6 glioma cells and phosphatidylinositol synthesis was stimulated 8-fold by thapsigargin (> 1 microM). Agonist-stimulated calcium release did not increase phosphatidylglycerol synthesis in N1E-115 cells. Thapsigargin-stimulated phosphatidylglycerol synthesis and agonist-stimulated phosphatidylinositol synthesis could occur at the same time. Similar results were obtained with TMB-8, an inhibitor of intracellular Ca2+ release that decreases diacylglycerol utilization by blocking choline uptake and phosphatidylcholine synthesis without affecting resting [Ca2+]i. Thus [Ca2+]i does not directly mediate the effects of thapsigargin, TMB-8 or agonist stimulation on anionic phospholipid metabolism. These additional effects may limit the use of thapsigargin to assess Ca(2+)-dependence of phospholipid metabolism associated with Ca(2+)-mediated signal transduction.

    Topics: Animals; Calcium; Gallic Acid; Glioma; Mice; Neuroblastoma; Oleic Acid; Oleic Acids; Phosphates; Phosphatidylglycerols; Phosphatidylinositols; Rats; Terpenes; Thapsigargin; Tumor Cells, Cultured

1994
Calcium current activated by muscarinic receptors and thapsigargin in neuronal cells.
    The Journal of general physiology, 1994, Volume: 104, Issue:1

    The activation of muscarinic receptors in N1E-115 neuroblastoma cells elicits a voltage-independent calcium current. The current turns on slowly, reaches its maximum value approximately 45 s after applying the agonist, is sustained as long as agonist is present, and recovers by one half in approximately 10 s after washing the agonist away. The current density is 0.11 +/- 0.08 pA/pF (mean +/- SD; n = 12). It is absent in zero-Ca++ saline and reduced by Mn++ and Ba++. The I(V) curve characterizing the current has an extrapolated reversal potential > +40 mV. The calcium current is observed in cells heavily loaded with BAPTA indicating that the calcium entry pathway is not directly gated by calcium. In fura-2 experiments, we find that muscarinic activation causes an elevation of intracellular Ca++ that is due to both intracellular calcium release and calcium influx. The component of the signal that requires external Ca++ has the same time course as the receptor operated calcium current. Calcium influx measured in this way elevates (Ca++)i by 89 +/- 41 nM (n = 7). Thapsigargin, an inhibitor of Ca++/ATPase associated with the endoplasmic reticulum (ER), activates a calcium current with similar properties. The current density is 0.22 +/- 0.20 pA/pF (n = 6). Thapsigargin activated current is reduced by Mn++ and Ba++ and increased by elevated external Ca++. Calcium influx activated by thapsigargin elevates (Ca++)i by 82 +/- 35 nM. The Ca++ currents due to agonist and due to thapsigargin do not sum, indicating that these procedures activate the same process. Carbachol and thapsigargin both cause calcium release from internal stores and the calcium current bears strong similarity to calcium-release-activated calcium currents in nonexcitable cells (Hoth, M., and R. Penner. 1993. Journal of Physiology. 465:359-386; Zweifach, A., and R. S. Lewis, 1993. Proceedings of the National Academy of Sciences, USA. 90:6295-6299).

    Topics: Animals; Calcium; Calcium-Transporting ATPases; Carbachol; Egtazic Acid; Ion Channel Gating; Mice; Muscarinic Agonists; Neuroblastoma; Neurons; Patch-Clamp Techniques; Potassium; Receptors, Muscarinic; Terpenes; Thapsigargin; Tumor Cells, Cultured

1994
Muscarinic receptor activation down-regulates the type I inositol 1,4,5-trisphosphate receptor by accelerating its degradation.
    The Journal of biological chemistry, 1994, Mar-18, Volume: 269, Issue:11

    Stimulation of SH-SY5Y human neuroblastoma cells with carbachol, a muscarinic agonist, down-regulates the type I inositol 1,4,5-trisphosphate (InsP3) receptor by > 90% with maximal and half-maximal effects after approximately 6 h and approximately 1 h, respectively. Examination of the mechanistic basis of this down-regulation revealed that carbachol increased the rate of type I InsP3 receptor degradation (radiolabeled immunoprecipitable receptor was lost from cells with half-times of > 8 h and approximately 1 h in the absence and presence of carbachol, respectively) and that the concentration of type I InsP3 receptor mRNA, despite a transient decrease after 3 h, did not correlate with levels of the receptor. Only those muscarinic receptor subtypes coupled to stimulation of phosphoinositide hydrolysis were capable of causing type I InsP3 receptor down-regulation. Ca2+ mobilization was pivotal to the mechanisms of receptor down-regulation, since perturbation of Ca2+ homeostasis with either EGTA or thapsigargin blocked the ability of carbachol to accelerate receptor degradation. Studies with thapsigargin also revealed that both functional InsP3-sensitive Ca2+ stores and persistent elevation of InsP3 concentration were required for down-regulation to occur. In conclusion, phosphoinositidase C-linked muscarinic receptors down-regulate the type I InsP3 receptor by accelerating its degradation. It appears that this process is initiated by persistent discharge of intracellular Ca2+ stores via the channels formed by tetramerically complexed type I InsP3 receptors.

    Topics: Animals; Calcium; Calcium Channels; Calcium-Transporting ATPases; Carbachol; Cell Line; CHO Cells; Cricetinae; Down-Regulation; Egtazic Acid; Electrophoresis, Polyacrylamide Gel; Gene Expression; Humans; Inositol 1,4,5-Trisphosphate; Inositol 1,4,5-Trisphosphate Receptors; Kinetics; Neuroblastoma; Phosphatidylinositols; Phosphorylation; Receptors, Cytoplasmic and Nuclear; Receptors, Muscarinic; RNA, Messenger; Terpenes; Thapsigargin; Transfection; Tumor Cells, Cultured

1994
A pertussis toxin-insensitive calcium influx mediated by neuropeptide Y2 receptors in a human neuroblastoma cell line.
    The Journal of biological chemistry, 1994, Mar-18, Volume: 269, Issue:11

    Stimulation of neuropeptide Y (NPY) Y2 receptors induced an intracellular free Ca2+ ([Ca2+]i) increase in a human neuroblastoma cell line, CHP-234. When NPY in a Ca(2+)-free solution was applied, this increase was abolished. Depolarization with high KCl evoked no response, suggesting that the responses were not mediated by voltage-gated Ca2+ channels. There was no evidence that the NPY response consisted of a capacitative Ca2+ entry sensitive to internal Ca2+ store levels. The [Ca2+]i elevation was diminished by Ni2+, a blocker of Ca2+ entry. Mn2+ induced a quench of the fura-2 fluorescence, which ceased promptly upon the removal of NPY, indicating that Ca2+ entry was linked tightly to receptor activation. Although thapsigargin- and ryanodine-sensitive Ca2+ stores were present, NPY-induced responses were not impaired by pretreatment with either drug. Furthermore, NPY had no effect on the thapsigargin-sensitive store. Pertussis toxin did not affect the NPY-stimulated [Ca2+]i increase, although it abolished the NPY-dependent inhibition of cAMP production. It is concluded that the Y2 receptors couple directly to receptor-operated Ca2+ channels without the involvement of intracellular Ca2+ stores. The results also indicate that Y2 receptors can activate both pertussis toxin-sensitive and -insensitive mechanisms in the same cell.

    Topics: Calcium; Calcium Channels; Calcium-Transporting ATPases; Cell Line; Cyclic AMP; Fluorescent Dyes; Fura-2; Humans; Kinetics; Microscopy, Fluorescence; Neuroblastoma; Neuropeptide Y; Nickel; Pertussis Toxin; Potassium Chloride; Receptors, Neuropeptide Y; Terpenes; Thapsigargin; Time Factors; Tumor Cells, Cultured; Virulence Factors, Bordetella

1994
Muscarinic receptor-mediated inositol 1,4,5-trisphosphate formation in SH-SY5Y neuroblastoma cells is regulated acutely by cytosolic Ca2+ and by rapid desensitization.
    Journal of neurochemistry, 1994, Volume: 63, Issue:1

    Stimulation of muscarinic receptors expressed in SH-SY5Y human neuroblastoma cells resulted in a complex profile of inositol 1,4,5-trisphosphate (InsP3) accumulation, with a dramatic increase (six- to eightfold) over the first 10 s (the "peak" phase) and subsequently from approximately 60 s onward, maintained at a lower but sustained level (the "plateau" phase). Chelation of extracellular Ca2+ with EGTA or inhibition of Ca2+ channels with Ni2+ showed that the plateau phase was dependent upon Ca2+ entry. Furthermore, use of thapsigargin and EGTA to discharge and sequester Ca2+ from intracellular stores revealed that Ca2+ from this source was capable of supporting the peak phase of the InsP3 response. Carbachol-stimulated phosphoinositidase C activity in permeabilized SH-SY5Y cells was also shown to be highly dependent on free Ca2+ concentration (20-100 nM) and suggests that under normal conditions, InsP3 formation is enhanced by increases in cytosolic free Ca2+ concentration that accompany muscarinic receptor activation. Measurement of carbachol-stimulated total inositol phosphate accumulation in the presence of Li+ indicated that the initial rate of phosphoinositide hydrolysis (from 0 to 30 s) was about fivefold greater than that from 30 to 300 s. This rapid but partial desensitization of receptor-mediated phosphoinositide hydrolysis provides strong evidence for the mechanism underlying the changes in InsP3 accumulation over this time. Because very similar data were obtained in Chinese hamster ovary cells transfected with human m3 receptor cDNA, we suggest that although increases in cytosolic free CA2+ concentration amplify InsP3 formation during stimulation of m3 muscarinic receptors, the primary factor that governs the profile of InsP3 accumulation is rapid, but partial, desensitization.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Calcium; Calcium Channels; Calcium-Transporting ATPases; Cytosol; Egtazic Acid; Humans; Hydrolysis; Inositol 1,4,5-Trisphosphate; Neuroblastoma; Nickel; Phosphatidylinositols; Receptors, Muscarinic; Terpenes; Thapsigargin; Tumor Cells, Cultured

1994
Extracellular ATP stimulates calcium influx in neuroblastoma x glioma hybrid NG108-15 cells.
    Journal of neurochemistry, 1993, Volume: 61, Issue:5

    ATP-induced changes in the intracellular Ca2+ concentration ([Ca2+]i) in neuroblastoma x glioma hybrid NG108-15 cells were studied. Using the fluorescent Ca2+ indicator fura-2, we have shown that the [Ca2+]i increased in response to ATP. ATP at 3 mM caused the greatest increased in [Ca2+]i, whereas at higher concentrations of ATP the response became smaller. Two nonhydrolyzable ATP analogues, adenosine 5'-thiotriphosphate and 5'-adenylyl-beta, gamma-imidodiphosphate, could not trigger significant [Ca2+]i change, but they could block the ATP effect. Other adenine nucleotides, including ADP, AMP, alpha beta-methylene-ATP, beta, gamma-methylene-ATP, and 2-methylthio-ATP, as well as UTP and adenosine, all had no effect on [Ca2+]i at 3 mM. In the absence of extracellular Ca2+, the effect of ATP was inhibited totally, but could be restored by the addition of Ca2+ to the cells. Upon removal of Mg2+, the maximum increase in [Ca2+]i induced by ATP was enhanced by about 42%. Ca(2+)-channel blockers partially inhibited the ATP-induced [Ca2+]i rise. The ATP-induced [Ca2+]i rise was not affected by thapsigargin pretreatment, though such pretreatment blocked bradykinin-induced [Ca2+]i rise completely. No heterologous desensitization of [Ca2+]i rise was observed between ATP and bradykinin. The magnitude of the [Ca2+]i rise induced by ATP increased between 1.5 and 3.1 times when external Na+ was replaced with Tris, N-methyl-D-glucamine, choline, or Li+. The addition of EGTA or verapamil to cells after their maximum response to ATP immediately lowered the [Ca2+]i to the basal level in Na(+)-containing or Na(+)-free Tris solution.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Adenosine Triphosphate; Adenylyl Imidodiphosphate; Animals; Bradykinin; Calcium; Calcium Channel Blockers; Calcium-Transporting ATPases; Dose-Response Relationship, Drug; Fura-2; Glioma; Hybrid Cells; Kinetics; Neuroblastoma; Nifedipine; omega-Conotoxins; Peptides; Terpenes; Thapsigargin; Verapamil

1993
Enkephalin activates the phospholipase C/Ca2+ system through cross-talk between opioid receptors and P2-purinergic or bradykinin receptors in NG 108-15 cells. A permissive role for pertussis toxin-sensitive G-proteins.
    The Biochemical journal, 1993, Feb-15, Volume: 290 ( Pt 1)

    In an NG 108-15 neuroblastoma x glioma hybrid cell suspension, extracellular ATP (via P2-purinergic receptors) and bradykinin stimulated Ins(1,4,5)P3 formation, which was accompanied by an increase in the cytosolic Ca2+ concentration ([Ca2+]i). Leucine enkephalin (EK) also slightly increased [Ca2+]i in the absence, but not in the presence, of apyrase, which hydrolyses extracellular ATP and ADP to AMP. When the cells were stimulated by P2-agonists or bradykinin prior to the application of EK, EK induces a remarkable rise in [Ca2+]i. This P2-agonist- or bradykinin-assisted EK action was also observed in single cells on a coverslip. A decrease in the extracellular Ca2+ concentration only slightly lowered the EK-induced rise in [Ca2+]i, but treatment of the cells with thapsigargin, an agent which depletes Ca2+ in the Ins(1,4,5)P3-sensitive pool, almost completely abolished EK action. The observed permissive stimulation by EK of Ins(1,4,5)P3 formation induced by a P2-agonist or bradykinin may be a primary event for the EK-induced [Ca2+]i rise. These actions of EK were antagonized by naloxone and completely reversed by prior treatment of the cells with pertussis toxin, whereas the toxin hardly affected the actions of P2-agonists and bradykinin themselves. Thus EK can induce phospholipase C activation and subsequent Ca2+ mobilization, provided that the cells have been previously or are simultaneously stimulated by endogenous adenine nucleotides or by externally applied P2-agonists or bradykinin. In this cross-talk mechanism between opioid receptors and these Ca(2+)-mobilizing agonist receptors, pertussis toxin-sensitive G-proteins play a permissive role.

    Topics: Adenosine Triphosphate; Bradykinin; Calcium; Enkephalin, Leucine; Enkephalins; Enzyme Activation; Glioma; GTP-Binding Proteins; Hybrid Cells; Inositol 1,4,5-Trisphosphate; Naloxone; Neuroblastoma; Pertussis Toxin; Receptors, Bradykinin; Receptors, Neurotransmitter; Receptors, Opioid; Receptors, Purinergic; Terpenes; Thapsigargin; Tumor Cells, Cultured; Type C Phospholipases; Virulence Factors, Bordetella

1993
Refilling the inositol 1,4,5-trisphosphate-sensitive Ca2+ store in neuroblastoma x glioma hybrid NG108-15 cells.
    The American journal of physiology, 1993, Volume: 264, Issue:3 Pt 1

    Bradykinin-induced increases in the intracellular free Ca2+ concentration ([Ca2+]i) were recorded in single NG108-15 cells with indo-1-based dual-emission microfluorimetry (50% effective concentration, 16 nM). A 1-min exposure to 30 nM bradykinin completely depleted the inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ store; refilling the store required extracellular Ca2+ (half time, 2 min). Refilling the IP3-sensitive store was completely blocked by 1 microM La3+ and 10 microM nitrendipine, but not 10 microM verapamil, 10 microM flunarizine, 1 microM nitrendipine, or 0.1 microM La3+. Thapsigargin irreversibly depleted the Ca2+ store and prevented its refilling (half-maximal inhibitory concentration, 3 nM). Influx of Ca2+ across the plasma membrane did not increase after depletion of the IP3-sensitive store by exposure to bradykinin, although maintained presence of the agonist produced significant Ca2+ influx. Similarly, Mn2+ and Ba2+ influx, as measured by indo-1 quenching and spectral shifts, did not increase following depletion of IP3-sensitive store. In contrast to depletion of the IP3-sensitive Ca2+ store by bradykinin, thapsigargin (10 nM) treatment produced Ca2+ and Ba2+ influx. We conclude that after Ca2+ mobilization, the IP3-sensitive Ca2+ store in NG108-15 cells is refilled with cytoplasmic Ca2+ via a thapsigargin-sensitive Ca(2+)-Mg(2+)-ATPase. Cytoplasmic Ca2+ is replenished by a persistent leak of Ca2+ across the plasma membrane. This leak is not modulated by the status of the intracellular Ca2+ store. In NG108-15 cells, agonist and thapsigargin-evoked Ca2+ entry are mediated by activation of plasmalemmal Ca2+ channels independent of the status of the IP3-sensitive intracellular Ca2+ store.

    Topics: Animals; Bradykinin; Calcium; Calcium-Transporting ATPases; Dose-Response Relationship, Drug; Flunarizine; Glioma; Hybrid Cells; Inositol 1,4,5-Trisphosphate; Mice; Neuroblastoma; Nitrendipine; Terpenes; Thapsigargin; Tumor Cells, Cultured; Verapamil

1993
Effect of bradykinin on cytosolic calcium in neuroblastoma cells using the fluorescent indicator fluo-3.
    Biochimica et biophysica acta, 1993, Jun-06, Volume: 1177, Issue:2

    Neuroblastoma cells were used to examine the effect of chronic exposure to increased concentrations of glucose, galactose, or L-fucose on bradykinin-stimulated intracellular calcium release using the calcium indicator fluo-3. Bradykinin caused a concentration dependent increase in the intracellular calcium concentration and phosphoinositide hydrolysis in neuroblastoma cells. Norepinephrine, carbachol, serotonin, and thapsigargin also increased the calcium concentration. Treatment of the cells with 10(-6) M bradykinin exhausts calcium release such that the successive treatment of the cells with norepinephrine, carbachol, or serotonin results in no secondary response. In contrast, bradykinin treatment of the cells following exposure to norepinephrine, carbachol, or serotonin caused a secondary increase in calcium release. These results suggest that several hormone responsive calcium pools may exist in neuroblastoma cells or that norepinephrine, carbachol, or serotonin may not fully stimulate calcium release. Bradykinin-stimulated calcium release is not effected by chronic exposure of the cells to increased concentrations of glucose, galactose, or L-fucose. Suggesting that hormone-stimulated calcium release is not an abnormality that develops in neural cells exposed to conditions that mimic the diabetic milieu. In addition, these studies provide evidence that fluo-3 is a good fluorescent indicator for the study of calcium mobilization in cultured neuroblastoma cells.

    Topics: Aniline Compounds; Animals; Bradykinin; Calcium; Carbachol; Cytosol; Fluorescent Dyes; Mice; Neuroblastoma; Norepinephrine; Phosphatidylinositols; Serotonin; Terpenes; Thapsigargin; Tumor Cells, Cultured; Xanthenes

1993
Inhibition of cyclic AMP accumulation in intact NCB-20 cells as a direct result of elevation of cytosolic Ca2+.
    Journal of neurochemistry, 1992, Volume: 59, Issue:5

    Earlier studies established that adenylyl cyclase in NCB-20 cell plasma membranes is inhibited by concentrations of Ca2+ that are achieved in intact cells. The present studies were undertaken to prove that agents such as bradykinin and ATP, which elevate the cytosolic Ca2+ concentration ([Ca2+]i) from internal stores in NCB-20 cells, could inhibit cyclic AMP (cAMP) accumulation as a result of their mobilization of [Ca2+]i and not by other mechanisms. Both bradykinin and ATP transiently inhibited [3H]cAMP accumulation in parallel with their transient mobilization of [Ca2+]i. The [Ca2+]i rise stimulated by bradykinin could be blocked by treatment with thapsigargin; this thapsigargin treatment precluded the inhibition of cAMP accumulation mediated by bradykinin (and ATP). A rapid rise in [Ca2+]i, as elicited by bradykinin, rather than the slow rise evoked by thapsigargin was required for inhibition of [3H]cAMP accumulation. Desensitization of protein kinase C did not modify the inhibitory action of bradykinin on [3H]cAMP. Effects of Ca2+ on phosphodiesterase were also excluded in the present studies. The accumulated data are consistent with the hypothesis that hormonal mobilization of [Ca2+]i leads directly to the inhibition of cAMP accumulation in these cells and presumably in other cells that express the Ca(2+)-inhibitable form of adenylyl cyclase.

    Topics: Animals; Bradykinin; Brain Neoplasms; Calcium; Cricetinae; Cricetulus; Cyclic AMP; Cytosol; Mice; Neuroblastoma; Phosphoric Diester Hydrolases; Protein Kinase C; Terpenes; Thapsigargin; Tumor Cells, Cultured

1992
Bradykinin and muscarine induce Ca(2+)-dependent oscillations of membrane potential in rat glioma cells indicating a rhythmic Ca2+ release from internal stores: thapsigargin and 2,5-di(tert-butyl)-1, 4-benzohydroquinone deplete InsP3-sensitive Ca2+ stores
    Experimental cell research, 1992, Volume: 202, Issue:2

    Continuous superfusion of rat glioma cells with medium containing bradykinin (from 0.2 nM) induced a transient hyperpolarization followed by regular hyperpolarizing oscillations of the membrane potential. Similar repetitive hyperpolarizing oscillations were caused by extracellularly applied bradykinin or muscarine or by intracellularly injected GTP-gamma-S. The frequency of the oscillations was 1 per minute at bradykinin concentrations ranging from 0.2 nM to 2 microM, but the amplitude and duration increased with rising peptide concentration. The muscarine-induced oscillations were blocked by atropine. In the presence of extracellular Ca2+, the substances thapsigargin, 2,5-di(tert-butyl)-1,4-benzohydroquinone (tBuBHQ), and ionomycin reversibly suppressed the bradykinin-induced oscillations. Thapsigargin and tBuBHA, which are known to block the Ca2+ ATPase of endoplasmic reticulum, caused a transient rise in cytosolic Ca2+ activity, monitored with Fura-2, in suspensions of rat glioma cells or of mouse neuroblastoma-rat glioma hybrid cells. After a transient Ca2+ rise caused by thapsigargin, tBuBHQ, or ionomycin, the Ca2+ response to bradykinin which is known to be due to release of Ca2+ from internal stores was suppressed. This indicates that thapsigargin and tBuBHQ deplete internal Ca2+ stores as already seen previously for ionomycin. Thus, the inhibition of the membrane potential oscillations by thapsigargin, tBuBHQ, and ionomycin indicates that the oscillations are associated with activation of InsP3-sensitive Ca2+ stores. In some cells composite oscillation patterns which consisted of two independent oscillations with different amplitudes that overlapped additively were seen. We discuss that this pattern and the concentration dependency of the oscillations could be due to "quantal" Ca2+ release from stores with different inositol 1,4,5-triphosphate sensitivities. Subsidence of the oscillations after omission of extracellular Ca2+ seems to be due to a lack of replenishment of the intracellular stores with Ca2+, which comes from the extracellular compartment.

    Topics: Animals; Benzoquinones; Bradykinin; Calcium; Cytosol; Glioma; Hybrid Cells; Inositol 1,4,5-Trisphosphate; Membrane Potentials; Mice; Muscarine; Neuroblastoma; Rats; Terpenes; Thapsigargin; Tumor Cells, Cultured

1992
Chronic muscarinic stimulation of SH-SY5Y neuroblastoma cells suppresses inositol 1,4,5-trisphosphate action. Parallel inhibition of inositol 1,4,5-trisphosphate-induced Ca2+ mobilization and inositol 1,4,5-trisphosphate binding.
    The Journal of biological chemistry, 1991, Nov-25, Volume: 266, Issue:33

    The possibility that chronic activation of the phosphoinositide-mediated signaling pathway modifies the Ca(2+)-mobilizing action of inositol 1,4,5-trisphosphate (InsP3) was examined. SH-SY5Y human neuroblastoma cells were exposed to carbachol, permeabilized electrically, loaded with 45Ca2+, and 45Ca2+ mobilization in response to exogenous InsP3 was assessed. In control permeabilized cells, InsP3 released 65 +/- 2% of sequestered 45Ca2+ (EC50 = 0.32 +/- 0.05 microM). Pre-treatment with carbachol reduced both maximal InsP3-induced 45Ca2+ release (to 34 +/- 3%, with half-maximal and maximal inhibition at approximately 3 and 6 h, respectively) and the potency of InsP3 (EC50 = 0.92 +/- 0.13 microM). This inhibitory effect of carbachol was half-maximal at approximately 5 microM, was mediated by muscarinic receptors, and was reversible following withdrawal of agonist. Pretreatment with phorbol 12,13-dibutyrate did not alter the maximal effect of InsP3 but doubled its EC50. Evidence suggesting that the inhibitory effects of carbachol pretreatment resulted from altered Ca2+ homeostasis was not forthcoming; both 45Ca2+ uptake and release induced by ionomycin and thapsigargin were identical in control and pretreated permeabilized cells, as were the characteristics of reuptake of released Ca2+. In contrast, carbachol pretreatment, without altering the affinity of InsP3 (Kd = 64 +/- 7 nM), reduced the density of [32P]InsP3-binding sites from 2.0 +/- 0.1 to 1.0 +/- 0.1 pmol/mg protein with a time course essentially identical to that for the reduction in responsiveness to InsP3. This effect was not mimicked by pretreatment of cells with phorbol 12,13-dibutyrate. These data indicate that chronic activation of phosphoinositide hydrolysis can reduce the abundance of InsP3 receptors and that this causes a reduction in size of the InsP3-sensitive Ca2+ store. This modification, possibly in conjunction with a protein kinase C-mediated event, appears to account for the carbachol-induced suppression of InsP3 action. As intracellular InsP3 mass remained elevated above basal for at least 24 h after addition of carbachol, suppression of the Ca(2+)-mobilizing activity of InsP3 represents an important adaptive response to cell stimulation that can limit the extent to which intracellular Ca2+ is mobilized.

    Topics: Calcium; Calcium Channels; Carbachol; Cell Line; Cell Membrane; Cell Membrane Permeability; Colforsin; Humans; Inositol 1,4,5-Trisphosphate; Inositol 1,4,5-Trisphosphate Receptors; Inositol Phosphates; Kinetics; Neuroblastoma; Phorbol 12,13-Dibutyrate; Plant Extracts; Receptors, Cell Surface; Receptors, Cytoplasmic and Nuclear; Terpenes; Thapsigargin; Tretinoin

1991
The thapsigargin-sensitive intracellular Ca2+ pool is more important in plasma membrane Ca2+ entry than the IP3-sensitive intracellular Ca2+ pool in neuronal cell lines.
    Biochemical and biophysical research communications, 1991, Nov-14, Volume: 180, Issue:3

    In NG108-15 cells, bradykinin (BK) and thapsigargin (TG) caused transient increases in a cytosolic free Ca2+ concentration ([Ca2+]i), after which [Ca2+]i elevated by TG only declined to a higher, sustained level than an unstimulated level. In PC12 cells, carbachol (CCh) evoked a transient increase in [Ca2+]i followed by a sustained rise of [Ca2+]i, whereas [Ca2+]i elevated by TG almost maintained its higher level. In the absence of extracellular Ca2+, the sustained elevation of [Ca2+]i induced by each drug we used was abolished. In addition, the rise in [Ca2+]i stimulated by TG was less affected after CCh or BK, whereas CCh or BK caused no increase in [Ca2+]i after TG. TG neither increased cellular inositol phosphates nor modified the inositol phosphates format on stimulated by CCh or BK. We conclude that TG may release Ca2+ from both IP3-sensitive and -insensitive intracellular pools and that some kinds of signalling to link the intracellular Ca2+ pools and Ca2+ entry seem to exist in neuronal cells.

    Topics: Animals; Biological Transport; Bradykinin; Calcium; Calcium Channel Blockers; Cell Line; Cell Membrane; Fluorescent Dyes; Fura-2; Glioma; Inositol 1,4,5-Trisphosphate; Inositol Phosphates; Kinetics; Neuroblastoma; Nimodipine; omega-Conotoxins; PC12 Cells; Peptides, Cyclic; Terpenes; Thapsigargin

1991
Y1 receptors for neuropeptide Y are coupled to mobilization of intracellular calcium and inhibition of adenylate cyclase.
    FEBS letters, 1990, Jan-15, Volume: 260, Issue:1

    Two types of binding sites have previously been described for neuropeptide Y (NPY), called Y1 and Y2 receptors. The intracellular events following Y1 receptor activation was studied in the human neuroblastoma cell line SK-N-MC. Both NPY and the specific Y1 receptor ligand, [Leu31,Pro34]-NPY, caused a rapid and transient increase in the concentration of free calcium in the cytoplasm as measured by the fluorescent probe, Fura-2. The effect of both peptides was independent of extracellular calcium as addition of EGTA or manganese neither changed the size nor the shape of the calcium response. The calcium response to NPY was abolished by pretreatment with thapsigargin, which can selectively deplete a calcium store in the endoplasmic reticulum. Y1 receptor stimulation, by both NPY and [Leu31,Pro34]NPY, also inhibited the forskolin-stimulated cAMP production with an EC50 of 3.5 nM. There was a close relation between the receptor binding and the cellular effects as half-maximal displacement of [125I-Tyr36]monoiodoNPY from the receptor was obtained with 2.1 nM NPY. The Y2-specific ligand NPY(16-36)peptide had no effect on either intracellular calcium or cAMP levels in the SK-N-MC cells. It is concluded that Y1 receptor stimulation is associated with both mobilization of intracellular calcium and inhibition of adenylate cyclase activity.

    Topics: Adenylyl Cyclase Inhibitors; Animals; Binding Sites; Calcium; Colforsin; Cytosol; Fluorescent Dyes; Intracellular Membranes; Neuroblastoma; Neuropeptide Y; Plant Extracts; Receptors, Neuropeptide Y; Receptors, Neurotransmitter; Swine; Thapsigargin; Tumor Cells, Cultured

1990