thapsigargin and Hypoglycemia

thapsigargin has been researched along with Hypoglycemia* in 3 studies

Other Studies

3 other study(ies) available for thapsigargin and Hypoglycemia

ArticleYear
The role of the endoplasmic reticulum stress response following cerebral ischemia.
    International journal of stroke : official journal of the International Stroke Society, 2018, Volume: 13, Issue:4

    Background Cornu ammonis 3 (CA3) hippocampal neurons are resistant to global ischemia, whereas cornu ammonis (CA1) 1 neurons are vulnerable. Hamartin expression in CA3 neurons mediates this endogenous resistance via productive autophagy. Neurons lacking hamartin demonstrate exacerbated endoplasmic reticulum stress and increased cell death. We investigated endoplasmic reticulum stress responses in CA1 and CA3 regions following global cerebral ischemia, and whether pharmacological modulation of endoplasmic reticulum stress or autophagy altered neuronal viability . Methods In vivo: male Wistar rats underwent sham or 10 min of transient global cerebral ischemia. CA1 and CA3 areas were microdissected and endoplasmic reticulum stress protein expression quantified at 3 h and 12 h of reperfusion. In vitro: primary neuronal cultures (E18 Wistar rat embryos) were exposed to 2 h of oxygen and glucose deprivation or normoxia in the presence of an endoplasmic reticulum stress inducer (thapsigargin or tunicamycin), an endoplasmic reticulum stress inhibitor (salubrinal or 4-phenylbutyric acid), an autophagy inducer ([4'-(N-diethylamino) butyl]-2-chlorophenoxazine (10-NCP)) or autophagy inhibitor (3-methyladenine). Results In vivo, decreased endoplasmic reticulum stress protein expression (phospho-eIF2α and ATF4) was observed at 3 h of reperfusion in CA3 neurons following ischemia, and increased in CA1 neurons at 12 h of reperfusion. In vitro, endoplasmic reticulum stress inducers and high doses of the endoplasmic reticulum stress inhibitors also increased cell death. Both induction and inhibition of autophagy also increased cell death. Conclusion Endoplasmic reticulum stress is associated with neuronal cell death following ischemia. Neither reduction of endoplasmic reticulum stress nor induction of autophagy demonstrated neuroprotection in vitro, highlighting their complex role in neuronal biology following ischemia.

    Topics: Animals; Brain Ischemia; CA1 Region, Hippocampal; CA3 Region, Hippocampal; Cell Death; Cells, Cultured; Disease Models, Animal; Endoplasmic Reticulum Stress; Enzyme Inhibitors; Hypoglycemia; Hypoxia; Male; Neurons; Neuroprotective Agents; Rats, Wistar; Thapsigargin; Tuberous Sclerosis Complex 1 Protein; Tunicamycin

2018
Chemical induction of the unfolded protein response in the liver increases glucose production and is activated during insulin-induced hypoglycaemia in rats.
    Diabetologia, 2008, Volume: 51, Issue:10

    Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) can regulate insulin secretion, insulin action and in vitro hepatocyte glucose release. The aims of this study were to determine whether chemical agents that induce ER stress regulate glucose production in vivo and to identify a physiological setting in which this may be important.. A pancreatic clamp test was performed in anaesthetised rats, and insulin and glucagon were replaced at basal levels. [6,6-(2)H(2)]Glucose was infused in the absence (CON, n = 10) or presence of ER stress-inducing agents, namely, tunicamycin (Tun, n = 10) or thapsigargin (Thap, n = 10).. Arterial insulin, glucagon, corticosterone and NEFA concentrations were constant throughout experiments and not different among groups. After 1 h, the glucose concentration was significantly increased in Tun and Thap rats (1.5 +/- 0.2 and 2.1 +/- 0.3 mmol/l, respectively; mean +/- SD), but did not change in CON rats. Glucose production increased (p < 0.05) by 11.0 +/- 1.6 and 13.2 +/- 2.2 micromol kg(-1) min(-1) in Tun and Thap rats, respectively, but did not change in CON rats. When glucose was infused in a fourth group (HYPER) to match the increase in glucose observed in the Tun and Thap rats, glucose production decreased by approximately 22 micromol kg(-1) min(-1). Liver phosphorylase activity was increased and glycogen decreased in the Tun and Thap groups compared with the CON and HYPER groups. Given that glucose deprivation induces ER stress in cells, we hypothesised that hypoglycaemia, a condition that elicits increased glucose production, would activate the UPR in the liver. Three hour hyperinsulinaemic (5 mU kg(-1) min(-1)) -euglycaemic (EUG, approximately 7.2 mmol/l, n = 6) or -hypoglycaemic (HYPO, approximately 2.8 mmol/l, n = 6) clamps were performed in conscious rats. Several biochemical markers of the UPR were significantly increased in the liver, but not in kidney or pancreas, in HYPO vs EUG rats.. Based on our findings that the chemical induction of the UPR increased glucose production and that prolonged hypoglycaemia activated the UPR in the liver, we propose that the UPR in the liver may contribute to the regulation of glucose production during prolonged hypoglycaemia.

    Topics: Animals; Corticosterone; Glucagon; Glucose; Hypoglycemia; Hypoglycemic Agents; Insulin; Liver; Male; Rats; Rats, Wistar; Thapsigargin; Tunicamycin

2008
Ca2+-activated K+ currents in rat locus coeruleus neurons induced by experimental ischemia, anoxia, and hypoglycemia.
    Journal of neurophysiology, 1997, Volume: 78, Issue:5

    Ca2+-activated K+ currents in rat locus coeruleus neurons induced by experimental ischemia, anoxia, and hypoglycemia. J. Neurophysiol. 78: 2674-2681, 1997. The effects of metabolic inhibition on membrane currents and N-methyl--aspartic acid (NMDA)-induced currents were investigated in dissociated rat locus coeruleus (LC) neurons by using the nystatin perforated patch recording mode under voltage-clamp conditions. Changes in the intracellular Ca2+ concentration ([Ca2+]i) during the metabolic inhibition were also investigated by using the microfluometry with a fluorescent probe, Indo-1. Removal of both the oxygen and glucose (experimental ischemia), deprivation of glucose (hypoglycemia), and a blockade of electron transport by sodium cyanide (NaCN) or a reduction of the mitochondrial membrane potential with carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazone(FCCP) as experimental anoxia all induced a slowly developing outward current (IOUT) at a holding potential of -40 mV. The application of 10(-4) M NMDA induced a rapid transient peak and a successive steady state inward current and a transient outward current immediately after washout. All treatments related to metabolic inhibition increased the NMDA-induced outward current(INMDA-OUT) and prolonged the one-half recovery time of INMDA-OUT. The reversal potentials of both IOUT and INMDA-OUT were close to the K+ equilibrium potential (EK) of -82 mV. Either charybdotoxin or tolbutamide inhibited the IOUT and INMDA-OUT, suggesting the contribution of Ca2+-activated and ATP-sensitive K+ channels, even though the inhibitory effect of tolbutamide gradually diminished with time. Under the metabolic inhibition, the basal level of [Ca2+]i was increased and the one-half recovery time of the NMDA-induced increase in [Ca2+]i was prolonged. The IOUT induced by NaCN was inhibited by a continuous treatment of thapsigargin but not by ryanodine, indicating the involvement of inositol 1,4, 5-trisphosphate (IP3)-induced Ca2+ release (IICR) store. These findings suggest that energy deficiency causes Ca2+ release from the IICR store and activates continuous Ca2+-activated K+ channels and transient ATP-sensitive K+ channels in acutely dissociated rat LC neurons.

    Topics: Animals; Brain Ischemia; Calcium; Calcium Channels; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Charybdotoxin; Glucose; Glyburide; Hypoglycemia; Hypoxia, Brain; In Vitro Techniques; Locus Coeruleus; Membrane Potentials; N-Methylaspartate; Neurons; Oxygen; Partial Pressure; Rats; Rats, Wistar; Ryanodine; Sodium Cyanide; Thapsigargin; Tolbutamide

1997