thapsigargin has been researched along with Hypertrophy--Right-Ventricular* in 2 studies
2 other study(ies) available for thapsigargin and Hypertrophy--Right-Ventricular
Article | Year |
---|---|
Activity of endothelium-derived hyperpolarizing factor is augmented in monocrotaline-induced pulmonary hypertension of rat lungs.
The mechanism of endothelium-dependent vasodilator signaling involves three components such as nitric oxide, prostacyclin, and endothelium-derived hyperpolarizing factor (EDHF). Although EDHF is distinct from nitric oxide and prostacyclin, it requires activation of Ca(2+)-sensitive K(+) channels (K(Ca)) and cytochrome P(450) metabolites. However, the physiological role of EDHF in the pulmonary circulation is unclear. Thus, we tested if EDHF would regulate vascular tone in rat lungs of control and monocrotaline (MCT)-induced pulmonary hypertension. Inhibition of EDHF with a combination of K(Ca) blockers, charybdotoxin (50 nM) plus apamin (50 nM), increased baseline vascular tone in MCT-induced hypertensive lungs. Thapsigargin (TG; 100 nM), an inhibitor of Ca-ATPase, caused greater EDHF-mediated vasodilation in MCT-induced hypertensive lungs. TG-induced vasodilation was abolished with the charybdotoxin-apamin combination. Sulfaphenazole (10 muM), a cytochrome P(450) inhibitor, reduced the TG-induced vasodilation in MCT-induced hypertensive lungs. RT-PCR analysis exhibited an increase in K(Ca) mRNA in MCT-treated lungs. These results indicate the augmentation of tonic EDHF activity, at least in part, through the alteration in cytochrome P(450) metabolites and the upregulation of K(Ca) expression in MCT-induced pulmonary hypertension. Topics: Animals; Anti-Infective Agents; Apamin; Biological Factors; Charybdotoxin; Cyclic GMP; Endothelium, Vascular; Enzyme Inhibitors; Epoprostenol; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Male; Monocrotaline; Neurotoxins; Nitric Oxide; Nitric Oxide Synthase; Potassium Channels, Calcium-Activated; Rats; Rats, Sprague-Dawley; RNA, Messenger; Sulfaphenazole; Thapsigargin; Vascular Cell Adhesion Molecule-1; Vasodilation | 2007 |
EDHF-mediated vasodilation involves different mechanisms in normotensive and hypertensive rat lungs.
The role of endothelium-derived hyperpolarizing factor (EDHF) in regulating the pulmonary circulation and the participation of cytochrome P-450 (CYP450) activity and gap junction intercellular communication in EDHF-mediated pulmonary vasodilation are unclear. We tested whether tonic EDHF activity regulated pulmonary vascular tone and examined the mechanism of EDHF-mediated pulmonary vasodilation induced by thapsigargin in salt solution-perfused normotensive and hypoxia-induced hypertensive rat lungs. After blockade of both cyclooxygenase and nitric oxide synthase, inhibition of EDHF with charybdotoxin plus apamin did not affect either normotensive or hypertensive vascular tone or acute hypoxic vasoconstriction but abolished thapsigargin vasodilation in both groups of lungs. The CYP450 inhibitors 7-ethoxyresorufin and sulfaphenazole and the gap junction inhibitor palmitoleic acid, but not 18alpha-glycyrrhetinic acid, inhibited thapsigargin vasodilation in normotensive lungs. None of these agents inhibited the vasodilation in hypertensive lungs. Thus tonic EDHF activity does not regulate either normotensive or hypertensive pulmonary vascular tone or acute hypoxic vasoconstriction. Whereas thapsigargin-induced EDHF-mediated vasodilation in normotensive rat lungs involves CYP450 activity and might act through gap junctions, the mechanism of vasodilation is apparently different in hypertensive lungs. Topics: Animals; Biological Factors; Blood Pressure; Cytochrome P-450 Enzyme System; Enzyme Inhibitors; Gap Junctions; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Male; Rats; Rats, Sprague-Dawley; Thapsigargin; Vasoconstriction; Vasodilation | 2003 |