thapsigargin has been researched along with Breast-Neoplasms* in 29 studies
29 other study(ies) available for thapsigargin and Breast-Neoplasms
Article | Year |
---|---|
Thapsigargin, Inhibitor of Sarco-Endoplasmic Ca
Thapsigargin (SERCA ATPase inhibitor) inhibited the S100A4 metastatic marker expression in MDA-MB231 breast cancer cells. We found that S100A4 gene transcription is regulated by Ca Topics: Breast Neoplasms; Calcium-Transporting ATPases; Cell Line, Tumor; Enzyme Inhibitors; Gene Expression Regulation, Neoplastic; Humans; S100 Calcium-Binding Protein A4; Sarcoplasmic Reticulum; Thapsigargin | 2019 |
Digitoxin enhances the growth inhibitory effects of thapsigargin and simvastatin on ER negative human breast cancer cells.
The cardiac glycoside digitoxin preferentially inhibits the growth of breast cancer cells and targets the Erk pathway. Digitoxin alters the expression of genes that mediate calcium metabolism and IAP genes.. Since the optimal treatment for cancer involves the use of agents in combination, we assessed the growth inhibitory effects of digitoxin combined with agents that alter calcium metabolism, thapsigargin, a sarcoplasmic/ER Ca(2+)-ATPase inhibitor, and the statin simvastatin, as well as digitoxin's effect on the IAP pathway of apoptosis.. To reveal signaling pathways, we treated human cancer cells with digitoxin, alone or combined with thapsigargin or simvastatin, and measured cell growth using the MTT and colony formation assays. We used histology and Western blot analysis of HEK293 cells to assay effects on IAPs.. Digitoxin inhibited the growth of breast, colon and ovarian cancer cells. Consistent with an effect on calcium metabolism, digitoxin exhibited synergy with thapsigargin and simvastatin on ER-negative breast cancer cells. Digitoxin activates expression of Erk pathway genes and suppresses expression of IAP genes. The growth inhibitory effects on HEK293 cells are not blocked by the pancaspase inhibitor zVAD-FMK, indicating that digitoxin may act by a caspase independent pathway of apoptosis. Furthermore, digitoxin does not have an effect on XIAP protein, a major anti-apoptotic protein.. Digitoxin appears to act through the Erk and stress response pathways and is worthwhile to study to prevent and treat cancer. Our findings warn of possible safety issues for cardiac patients who take a combination of digitoxin and statins. Topics: Apoptosis; Breast Neoplasms; Cell Line, Tumor; Digitoxin; Drug Synergism; HEK293 Cells; Humans; Inhibitor of Apoptosis Proteins; Signal Transduction; Simvastatin; Thapsigargin | 2016 |
Down-Regulation of Store-Operated Ca2+ Entry and Na+ Ca2+ Exchange in MCF-7 Breast Cancer Cells by Pharmacological JAK3 Inhibition.
Oscillations of cytosolic Ca2+ activity ([Ca2+]i) participate in the orchestration of tumor cell proliferation. [Ca2+]i could be increased by intracellular Ca2+ release followed by store-operated Ca2+-entry (SOCE). [Ca2+]i could be decreased by Ca2+ extrusion via Na+/Ca2+ exchange. Mechanisms accomplishing SOCE include the pore-forming ion channel unit Orai1 and its regulator STIM1, Na+/Ca2+ exchanger isoforms include NCX1. In MCF-7 breast carcinoma cells Orai1 and NCX1 have previously been shown to be modified by pharmacological inhibition of Janus activated kinase JAK2. The present study explored whether SOCE and Na+/Ca2+ exchange are similarly sensitive to pharmacological JAK3 inhibition.. MCF-7 breast carcinoma cells were studied in the absence and presence of the JAK3 inhibitor WHI-P154 (22 µM). [Ca2+]i was estimated from Fura-2-fluorescence, SOCE from increase of [Ca2+]i following Ca2+ re-addition after Ca2+-store depletion with sarcoendoplasmatic Ca2+-ATPase (SERCA) inhibitor thapsigargin (1 µM), and Na+/Ca2+ exchanger activity from increase of [Ca2+]i following extracellular Na+ removal. Transcript levels were quantified with RT-PCR.. Addition of ATP (100 µM) was followed by a rapid increase of [Ca2+]i, which was significantly blunted by WHI-P154. Thapsigargin-induced intracellular Ca2+ release was not appreciably influenced by WHI-P154. Subsequent SOCE was, however, significantly blunted by WHI-P154. WHI-P154 further significantly decreased Orai1 transcript levels. The increase of [Ca2+]i following extracellular Na+-removal and the NCX1 transcript levels were similarly decreased by WHI-P154.. The JAK3 inhibitor WHI-P154 decreases both, Orai1 and NCX1 transcript levels and thus impairs SOCE and Na+/Ca2+ exchange. Topics: Adenosine Triphosphate; Breast Neoplasms; Calcium; Down-Regulation; Female; Fura-2; Humans; Janus Kinase 3; MCF-7 Cells; ORAI1 Protein; Quinazolines; Real-Time Polymerase Chain Reaction; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Sodium-Calcium Exchanger; Spectrometry, Fluorescence; TATA-Box Binding Protein; Thapsigargin | 2016 |
Mitochondrial Ca²⁺ uniporter is critical for store-operated Ca²⁺ entry-dependent breast cancer cell migration.
Metastasis of cancer cells is a complicated multistep process requiring extensive and continuous cytosolic calcium modulation. Mitochondrial Ca(2+) uniporter (MCU), a regulator of mitochondrial Ca(2+) uptake, has been implicated in energy metabolism and various cellular signaling processes. However, whether MCU contributes to cancer cell migration has not been established. Here we examined the expression of MCU mRNA in the Oncomine database and found that MCU is correlated to metastasis and invasive breast cancer. MCU inhibition by ruthenium red (RuR) or MCU silencing by siRNA abolished serum-induced migration in MDA-MB-231 breast cancer cells and reduced serum- or thapsigargin (TG)-induced store-operated Ca2+ entry (SOCE). Serum-induced migrations in MDA-MB-231 cells were blocked by SOCE inhibitors. Our results demonstrate that MCU plays a critical role in breast cancer cell migration by regulating SOCE. Topics: Breast Neoplasms; Calcium; Calcium Channel Blockers; Calcium Channels; Cell Line, Tumor; Cell Movement; Female; Gene Expression Regulation, Neoplastic; Humans; Imidazoles; Mitochondria; Ruthenium Red; Thapsigargin | 2015 |
The Mechanism of Ca(2+) Movement in the Involvement of Baicalein-Induced Cytotoxicity in ZR-75-1 Human Breast Cancer Cells.
Baicalein (5,6,7-trihydroxyflavone) (1) has been found to be active against a wide variety of cancer cells. However, the molecular mechanism underlying the effects of 1 on the induction of Ca(2+) movement and cytotoxicity in human breast cancer cells is unknown. This study examined the relationship between 1-induced Ca(2+) signaling and cytotoxicity in ZR-75-1 human breast cancer cells. The in vitro investigations reported herein produced the following results: (i) Compound 1 increased intracellular Ca(2+) concentration ([Ca(2+)]i) in a concentration-dependent manner. The signal was decreased by approximately 50% by removal of extracellular Ca(2+). (ii) Compound 1-triggered [Ca(2+)]i increases were significantly suppressed by store-operated Ca(2+) channel blockers 2-aminoethoxydiphenyl borate (2-APB) and the PKC inhibitor GF109203X. (iii) In Ca(2+)-free medium, compound 1-induced [Ca(2+)]i increases were also inhibited by GF109203X. Furthermore, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (TG) or 2,5-ditert-butylhydroquinone (BHQ) abolished 1-induced [Ca(2+)]i increases. Inhibition of phospholipase C (PLC) with U73122 abolished 1-induced [Ca(2+)]i increases. (iv) Compound 1 (20-40 μM) caused cytotoxicity, increased reactive oxygen species (ROS) production, and activated caspase-9/caspase-3. Furthermore, compound 1-induced apoptosis was significantly inhibited by prechelating cytosolic Ca(2+) with BAPTA-AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester) or by decreasing ROS with the antioxidant NAC (N-acetylcysteine). Together, baicalein (1) induced a [Ca(2+)]i increase by inducing PLC-dependent Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry via PKC-dependent, 2-APB-sensitive store-operated Ca(2+) channels. Moreover, baicalein (1) induced Ca(2+)-associated apoptosis involved ROS production in ZR-75-1 cells. Topics: Acetylcysteine; Animals; Apoptosis; Boron Compounds; Breast Neoplasms; Calcium; Caspase 3; Caspase 9; Cytosol; Egtazic Acid; Endoplasmic Reticulum; Female; Flavanones; Humans; Indoles; Maleimides; Molecular Structure; Reactive Oxygen Species; Thapsigargin; Type C Phospholipases | 2015 |
Up-regulation of Orai1 expression and store operated Ca(2+) entry following activation of membrane androgen receptors in MCF-7 breast tumor cells.
Membrane androgen receptors (mAR) are functionally expressed in a variety of tumor-cells including the breast tumor-cell line MCF-7. They are specifically activated by testosterone albumin conjugates (TAC). The mAR sensitive signaling includes activation of Ras-related C3 botulinum toxin substrate 1 (Rac1) and reorganization of the actin filament network. Signaling of tumor-cells may further involve up-regulation of pore forming Ca(2+) channel protein Orai1, which accomplishes store operated Ca(2+) entry (SOCE). This study explored the regulation of Orai1 abundance and SOCE by mAR.. Actin filaments were visualized utilizing confocal microscopy, Rac1 activity using GST-GBD assay, Orai1 transcript levels by RT-PCR and total protein abundance by western blotting, Orai1 abundance at the cell surface by confocal microscopy and FACS-analysis, cytosolic Ca(2+) activity ([Ca(2+)]i) utilizing Fura-2-fluorescence, and SOCE from increase of [Ca(2+)]i following readdition of Ca(2+) after store depletion with thapsigargin (1 μM).. TAC treatment of MCF-7 cells was followed by Rac1 activation, actin polymerization, transient increase of Orai1transcript levels and protein abundance, and transient increase of SOCE. The transient increase of Orai1 protein abundance was abrogated by Rac1 inhibitor NSC23766 (50 μM) and by prevention of actin reorganization with cytochalasin B (1 μM).. mAR sensitive Rac1 activation and actin reorganization contribute to the regulation of Orai1 protein abundance and SOCE. Topics: Actin Cytoskeleton; Blotting, Western; Breast Neoplasms; Calcium; Calcium Channels; Cytosol; Enzyme Inhibitors; Female; Humans; MCF-7 Cells; ORAI1 Protein; rac1 GTP-Binding Protein; Real-Time Polymerase Chain Reaction; Receptors, Androgen; Thapsigargin | 2015 |
VN/14-1 induces ER stress and autophagy in HP-LTLC human breast cancer cells and has excellent oral pharmacokinetic profile in female Sprague Dawley rats.
Resistance to aromatase inhibitors is a major concern in the treatment of breast cancer. Long-term letrozole cultured (LTLC) cells represent a model of resistance to aromatase inhibitors. The LTLC cells were earlier generated by culturing MCF-7Ca, the MCF-7 human breast cancer cell line stably transfected with human placental aromatase gene for a prolonged period in the presence of letrozole. In the present study the effect of RAMBA, VN/14-1 on the sensitivity of LTLC cells upon multiple passaging and the mechanisms of action of VN/14-1 in such high passage LTLC (HP-LTLC) cells was investigated. We report that multiple passaging of LTLC cells (HP-LTLC cell clones) led to profound decrease in their sensitivity to VN/14-1. Additionally, microarray studies and protein analysis revealed that VN/14-1 induced marked endoplasmic reticulum (ER) stress and autophagy in HP-LTLC cells. We further report that VN/14-1 in combination with thapsigargin exhibited synergistic anti-cancer effect in HP-LTLC cells. Preliminary pharmacokinetics in rats revealed that VN/14-1 reached a peak plasma concentration (Cmax) within 0.17h after oral dosing. Its absolute oral bioavailability was >100%. Overall these results indicate potential of VN/14-1 for further clinical development as a potential oral agent for the treatment of breast cancer. Topics: Administration, Oral; Animals; Antineoplastic Agents; Autophagy; Biological Availability; Breast Neoplasms; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Down-Regulation; Drug Synergism; Endoplasmic Reticulum Stress; Female; Humans; Imidazoles; Intracellular Space; Rats; Rats, Sprague-Dawley; Thapsigargin; Tretinoin; Up-Regulation; Xenograft Model Antitumor Assays | 2014 |
Actein induces calcium release in human breast cancer cells.
The triterpene glycoside actein from the herb black cohosh preferentially inhibits the growth of breast cancer cells and activates the ER stress response. The ER IP3 receptor and Na,K-ATPase form a signaling microdomain. Since actein is lipophilic, its action may be limited by bioavailability.. To develop actein to prevent and treat cancer, we examined the primary targets and combinations with chemotherapy agents, as well as the ability of nanoparticles to enhance the activity.. To reveal signaling pathways, we treated human breast and colon cancer, as well as 293T and 293T (NF-κB), cells with actein, and measured effects using the MTT, luciferase promoter, Western blot and histology assays. To assess effects on calcium release, we preloaded cells with the calcium sensitive dye Fura-2. To enhance bioavailability, we conjugated actein to nanoparticle liposomes.. Actein strongly inhibited the growth of human breast cancer cells and induced a dose dependent release of calcium into the cytoplasm. The ER IP3 receptor antagonist heparin blocked this release, indicating that the receptor is required for activity. Heparin partially blocked the growth inhibitory effect, while the MEK inhibitor U0126 enhanced it. Consistent with this, actein synergized with the ER mobilizer thapsigargin. Further, actein preferentially inhibited the growth of 293T (NF-κB) cells. Nanoparticle liposomes increased the growth inhibitory activity of actein.. Actein alters the activity of the ER IP3 receptor and Na,K-ATPase, induces calcium release and modulates the NF-κB and MEK pathways and may be worthwhile to explore to prevent and treat breast cancer. Topics: Antineoplastic Agents, Phytogenic; Breast Neoplasms; Calcium; Cell Line, Tumor; Cimicifuga; Cytoplasm; Dose-Response Relationship, Drug; Endoplasmic Reticulum; Endoplasmic Reticulum Stress; Female; Heparin; Humans; Inositol 1,4,5-Trisphosphate; Inositol 1,4,5-Trisphosphate Receptors; Liposomes; NF-kappa B; Phytotherapy; Plant Extracts; Saponins; Signal Transduction; Sodium-Potassium-Exchanging ATPase; Thapsigargin; Triterpenes | 2013 |
Activation of the unfolded protein response bypasses trastuzumab-mediated inhibition of the PI-3K pathway.
HER2-positive breast cancer initially responds to trastuzumab treatment, but over time, resistance develops and rapid cancer progression occurs, for which various explanations have been proposed. Here we tested the hypothesis that induction of the unfolded protein response (UPR) could override HER2 inhibition by trastuzumab, leading to the re-activation of growth signaling and the activation of the downstream target Lipocalin 2 (LCN2). Trastuzumab significantly inhibited the basal expression of LCN2 in HER2 (+) SKBr3 human breast cancer cells. The induction of the UPR completely abrogated trastuzumab-mediated LCN2 downregulation, and, in fact caused an increase in transcription and secretion of LCN2 over baseline. Reduction of the UPR using 4-phenyl butyric acid (PBA) a chemical chaperone that ameliorates ER stress, restored trastuzumab-mediated inhibition. Inhibition of the PI3K/AKT signaling pathway in trastuzumab-treated/UPR-induced SKBr3 cells partially reduced the upregulation of LCN2. These results suggest that the UPR is a possible way to override the effect of trastuzumab in HER2(+) cancer cells. Topics: Acute-Phase Proteins; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Breast Neoplasms; Cell Line, Tumor; Drug Resistance, Neoplasm; Endoplasmic Reticulum Chaperone BiP; Enzyme Inhibitors; Female; Gene Expression; Heat-Shock Proteins; Humans; Imidazoles; Lipocalin-2; Lipocalins; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Quinolines; Receptor, ErbB-2; Signal Transduction; Thapsigargin; Transcription Factor CHOP; Trastuzumab; Unfolded Protein Response | 2013 |
Serum and glucocorticoid-regulated kinase 1 (SGK1) activation in breast cancer: requirement for mTORC1 activity associates with ER-alpha expression.
Mammalian target of rapamycin (mTOR) is an attractive target for cancer treatment. While rapamycin and its derivatives (e.g., everolimus) have been shown to inhibit mTOR signaling and cell proliferation in preclinical models of breast cancer, mTOR inhibition has demonstrated variable clinical efficacy with a trend toward better responses in estrogen receptor alpha positive (ERα+) compared to ERα negative (ERα-) tumors. Recently, serum- and glucocorticoid-regulated kinase 1 (SGK1) was identified as a substrate of mTOR kinase activity. Previous studies have alternatively suggested that either mTORC1 or mTORC2 is exclusively required for SGK1's Ser422 phosphorylation and activation in breast cancer cells. We investigated the effect of rapamycin on the growth of several ERα+ and ERα- breast cancer cell lines and examined differences in the phosphorylation of mTOR substrates (SGK1, p70S6K, and Akt) that might account for the differing sensitivity of these cell lines to rapamycin. We also examined which mTOR complex contributes to SGK1-Ser422 phosphorylation in ERα+ versus ERα- breast cell lines. We then assessed whether inhibiting SGK1 activity added to rapamycin-mediated cell growth inhibition by either using the SGK1 inhibitor GSK650394A or expressing an SGK1 shRNA. We observed sensitivity to rapamycin-mediated growth inhibition and inactivation of insulin-mediated SGK1-Ser422 phosphorylation in ERα+ MCF-7 and T47D cells, but not in ERα- MDA-MB-231 or MCF10A-Myc cells. In addition, either depleting SGK1 with shRNA or inhibiting SGK1 with GSK650394A preferentially sensitized MDA-MB-231 cells to rapamycin. Finally, we found that rapamycin-sensitive SGK1-Ser422 phosphorylation required ERα expression in MCF-7 derived cell lines. Therefore, targeting SGK1 activity may improve the efficacy of rapamycin and its analogs in the treatment of ERα- breast cancer. Topics: Antineoplastic Agents, Hormonal; Breast Neoplasms; Dexamethasone; Drug Resistance, Neoplasm; Enzyme Activation; Enzyme Activators; Estrogen Receptor alpha; Female; Furans; Humans; Immediate-Early Proteins; Insulin; MCF-7 Cells; Mechanistic Target of Rapamycin Complex 1; Mechanistic Target of Rapamycin Complex 2; Multiprotein Complexes; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Proteins; Pyridines; Pyrimidines; Sirolimus; Thapsigargin; TOR Serine-Threonine Kinases | 2012 |
Targeting carcinoma-associated fibroblasts within the tumor stroma with a fibroblast activation protein-activated prodrug.
Fibroblasts undergo a morphological transformation to a reactive phenotype in the tumor microenvironment characterized by the expression of proteins such as fibroblast activation protein (FAP), a post-prolyl endopeptidase with expression largely restricted to carcinoma-associated fibroblasts. Thapsigargin (TG) is a highly toxic natural plant product that triggers a rise in intracellular calcium levels and apoptosis. FAP is therefore a provocative target for the activation of prodrugs consisting of a FAP-specific peptide coupled to a potent cytotoxic analog of TG.. The efficacy of FAP-activated peptidyl-TG prodrugs was tested in vitro in cell proliferation assays and effects on intracellular calcium in human cancer cell lines. The effects of FAP-activated prodrugs on tumor growth and host toxicity were tested in Balb-C nude MCF-7 and LNCaP xenograft mice (n = 9-11 per group). P values were calculated using permutation tests based on 50 000 permutations. Mixed effects models were used to account for correlations among replicate measures. All statistical tests were two-sided.. FAP-activated prodrugs killed human cancer cells at low nanomolar concentrations (MCF-7 cells: IC(50) = 3.5 nM). Amino acid-12ADT analogs from FAP-cleaved prodrugs, but not uncleaved prodrugs, produced a rapid rise in intracellular calcium within minutes of exposure. Immunohistochemical analysis of xenografts exposed to FAP-prodrugs documented stromal-selective cell death of fibroblasts, pericytes, and endothelial cells of sufficient magnitude to inhibit growth of MCF-7 and LNCaP xenografts with minimal systemic toxicity, whereas non-FAP cleavable prodrugs were inactive. MCF-7 and LNCaP xenografts treated with a FAP-activated prodrug had maximal treated-to-control tumor volume ratios of 0.36 (treated: mean = 0.206 mm(3), 95% CI = 0.068 to 0.344 mm(3); control: mean = 0.580 mm(3), 95% CI = 0.267 to 0.893 mm(3)) and 0.24 (treated: mean = 0.131 mm(3), 95% CI = 0.09 to 0.180 mm(3); control: mean = 0.543 mm(3), 95% CI = 0.173 to 0.913 mm(3)), respectively, on day 21 after therapy.. This study validates the proteolytic activity of FAP as a target for the activation of a systemically delivered cytotoxic prodrug and demonstrates that targeted killing of cells within the stromal compartment of the tumor microenvironment can produce a therapeutic response. Topics: Amino Acids; Animals; Antineoplastic Agents; Apoptosis; Biomarkers, Tumor; Breast Neoplasms; Calcium; Cell Line, Tumor; Endopeptidases; Female; Gelatinases; Gene Expression Regulation, Neoplastic; Humans; Male; Membrane Proteins; Mice; Mice, Inbred BALB C; Neoplasms; Prodrugs; Prostatic Neoplasms; Serine Endopeptidases; Thapsigargin; Transplantation, Heterologous; Urinary Bladder Neoplasms | 2012 |
Neutrophil granulocytes promote the migratory activity of MDA-MB-468 human breast carcinoma cells via ICAM-1.
Tumor infiltrating neutrophil granulocytes do not only exhibit tumor eliminating functions but also promote tumor progression. We have recently shown that neutrophil granulocytes can serve as linking cells for the adhesion of MDA-MB-468 breast carcinoma cells to pulmonary endothelium. Neutrophil granulocytes but not MDA-MB-468 cells express beta(2)-integrins, the ligands of the intercellular adhesion molecule (ICAM)-1, whereas ICAM-1 is strongly expressed on MDA-MB-468 cells. Consequently, the herein presented study was performed to investigate if this interaction has also an influence on the migratory activity of the tumor cells and whether ICAM-1 signaling plays a role in this process, too. We found that the continuous release of interleukin-8 (IL-8) and GRO-alpha by MDA-MB-468 cells increases the migratory activity of neutrophil granulocytes and attracts these cells towards the tumor cells which enables direct cell-cell interactions. These interactions in turn increase the migratory activity of the tumor cells in an ICAM-1 clustering-dependent mechanism since transfection of the tumor cells with specific siRNA against ICAM-1 abolished the effect. Moreover, ICAM-1 cross-linking on tumor cells induces the phosphorylation of focal adhesion components such as focal adhesion kinase and paxillin via src kinase as well as the activation of the p38 MAPK pathway via Rho kinase in a time-dependent manner. Our results provide evidence that ICAM-1 is coupled to intracellular signaling pathways involved in tumor cell migration. Thus, neutrophil granulocytes can act as modulators of the metastatic capability of tumor cells by ligation of ICAM-1. Topics: Antibodies, Monoclonal; Breast Neoplasms; Calcium Signaling; Cell Communication; Cell Line, Tumor; Cell Movement; Chemokine CXCL1; Coculture Techniques; Cross-Linking Reagents; Culture Media, Conditioned; Estrenes; Female; Focal Adhesion Kinase 1; Humans; Intercellular Adhesion Molecule-1; Interleukin-8; Macrophage-1 Antigen; Neutrophils; p38 Mitogen-Activated Protein Kinases; Paxillin; Phosphorylation; Protein Kinase C; Protein Kinase Inhibitors; Pyrimidines; Pyrrolidinones; rho-Associated Kinases; RNA, Small Interfering; Signal Transduction; src-Family Kinases; Thapsigargin | 2010 |
Up-regulation of gamma-synuclein contributes to cancer cell survival under endoplasmic reticulum stress.
Previous studies have demonstrated that gamma-synuclein is overexpressed in a variety of human malignancies. Overexpression of gamma-synuclein in human breast cancer cells leads to an increase in cell motility, resistance to chemotherapeutic drugs, and mitotic checkpoint dysfunction. We report in this study that gamma-synuclein is up-regulated by endoplasmic reticulum stress. The up-regulation of gamma-synuclein expression by endoplasmic reticulum stress is mediated, at least in part, by activation transcription factor (ATF) 4. Knockdown of gamma-synuclein sensitized human breast cancer cells to endoplasmic reticulum stress-induced apoptosis. Induction of apoptosis by endoplasmic reticulum stress when gamma-synuclein was inhibited was dependent on JNK or caspase activation, with caspase-3 and caspase-7 being involved. Treatment with the JNK or caspase-3 and caspase-7 inhibitor partially blocked endoplasmic reticulum stress-induced apoptosis in breast cancer cells transfected with or without the siRNA against gamma-synuclein. Taken together, these data suggest that gamma-synuclein may promote cancer progression by suppressing endoplasmic reticulum stress-induced apoptosis. Topics: Activating Transcription Factor 4; Apoptosis; Biomarkers, Tumor; Breast Neoplasms; Caspase 3; Caspase 7; Caspase Inhibitors; Cell Line, Tumor; Chromatin Immunoprecipitation; Disease Progression; Endoplasmic Reticulum; Female; Flow Cytometry; gamma-Synuclein; Gene Deletion; Humans; MAP Kinase Kinase 4; Promoter Regions, Genetic; RNA Interference; RNA, Small Interfering; Thapsigargin; Tunicamycin; Up-Regulation | 2009 |
MCF-7 breast carcinoma cells express ryanodine receptor type 1: functional characterization and subcellular localization.
Breast carcinoma-derived MCF-7 cells are frequently used in biomedical research. However, few reports exist regarding the characterization of signaling mechanisms in these cancerous cells involved in intracellular Ca(2+) dynamics. Consequently, the aim of these experiments was to characterize the ryanodine receptor/Ca(2+) release channel (RyR) present in MCF-7 cells. Ryanodine (100 nM), cADPR (5 microM), and caffeine (10 mM) promoted cytoplasmic Ca(2+) mobilization; in contrast, ryanodine at inhibitory concentration (100 microM) decreased the basal Ca(2+) level. Fluorescent probes demonstrated that RyR is located mainly in endomembranes. Some degree of co-localization with inositol trisphosphate receptor (IP(3)R) was observed, whereas coincidence with thapsigargin-sensitive Ca(2+)-ATPase (SERCA) was more limited. Molecular cloning resulted in the detection exclusively of RyR isoform 1. For the first time, it is shown that MCF-7 cells express functional RyR. Topics: Aged; Animals; Base Sequence; Breast Neoplasms; Calcium; Cell Line, Tumor; Enzyme Inhibitors; Female; Humans; Inositol 1,4,5-Trisphosphate Receptors; Mice; Molecular Sequence Data; Protein Isoforms; Ryanodine Receptor Calcium Release Channel; Sequence Alignment; Signal Transduction; Subcellular Fractions; Thapsigargin | 2009 |
Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression.
NF-kappaB is critical for determining cellular sensitivity to apoptotic stimuli by regulating both mitochondrial and death receptor apoptotic pathways. The endoplasmic reticulum (ER) emerges as a new apoptotic signaling initiator. However, the mechanism by which ER stress activates NF-kappaB and its role in regulation of ER stress-induced cell death are largely unclear. Here, we report that, in response to ER stress, IKK forms a complex with IRE1alpha through the adapter protein TRAF2. ER stress-induced NF-kappaB activation is impaired in IRE1alpha knockdown cells and IRE1alpha(-/-) MEFs. We found, however, that inhibiting NF-kappaB significantly decreased ER stress-induced cell death in a caspase-8-dependent manner. Gene expression analysis revealed that ER stress-induced expression of tumor necrosis factor alpha (TNF-alpha) was IRE1alpha and NF-kappaB dependent. Blocking TNF receptor 1 signaling significantly inhibited ER stress-induced cell death. Further studies suggest that ER stress induces down-regulation of TRAF2 expression, which impairs TNF-alpha-induced activation of NF-kappaB and c-Jun N-terminal kinase and turns TNF-alpha from a weak to a powerful apoptosis inducer. Thus, ER stress induces two signals, namely TNF-alpha induction and TRAF2 down-regulation. They work in concert to amplify ER-initiated apoptotic signaling through the membrane death receptor. Topics: Adenoviridae; Animals; Apoptosis; Blotting, Western; Breast Neoplasms; Caspase 8; Caspases; Cell Line, Tumor; Cell Survival; Down-Regulation; Electrophoretic Mobility Shift Assay; Endoplasmic Reticulum; Endoribonucleases; Enzyme Activation; Female; Fibroblasts; Gene Expression Regulation; Genes, Reporter; Humans; I-kappa B Proteins; JNK Mitogen-Activated Protein Kinases; Kinetics; L Cells; Luciferases; Lung Neoplasms; Male; Membrane Proteins; Mice; Mice, Knockout; NF-kappa B; Precipitin Tests; Prostatic Neoplasms; Protein Serine-Threonine Kinases; Reverse Transcriptase Polymerase Chain Reaction; RNA, Small Interfering; Thapsigargin; TNF Receptor-Associated Factor 2; Tumor Necrosis Factor-alpha; Tunicamycin | 2006 |
Cellular prion protein inhibits proapoptotic Bax conformational change in human neurons and in breast carcinoma MCF-7 cells.
Prion protein (PrP) prevents Bcl-2-associated protein X (Bax)-mediated cell death, but the step at which PrP inhibits is not known. We first show that PrP is very specific for Bax and cannot prevent Bak (Bcl-2 antagonist killer 1)-, tBid-, staurosporine- or thapsigargin-mediated cell death. As Bax activation involves Bax conformational change, mitochondrial translocation, cytochrome c release and caspase activation, we investigated which of these events was inhibited by PrP. PrP inhibits Bax conformational change, cytochrome c release and cell death in human primary neurons and MCF-7 cells. Serum deprivation-induced Bax conformational change is more rapid in PrP-null cells. PrP does not prevent active caspase-mediated cell death. PrP does not colocalize with Bax in normal or apoptotic primary neurons and cannot prevent Bax-mediated cytochrome c release in a mitochondrial cell-free system. We conclude that PrP protects against Bax-mediated cell death by preventing the Bax proapoptotic conformational change that occurs initially in Bax activation. Topics: Apoptosis; bcl-2 Homologous Antagonist-Killer Protein; bcl-2-Associated X Protein; BH3 Interacting Domain Death Agonist Protein; Breast Neoplasms; Carrier Proteins; Caspase 6; Cell Line, Tumor; Cysteine Endopeptidases; Cytochromes c; Enzyme Inhibitors; Female; Humans; Membrane Proteins; Mitochondria; Neurons; Protein Structure, Quaternary; Protein Transport; Proto-Oncogene Proteins c-bcl-2; PrPC Proteins; Thapsigargin | 2005 |
Capacitative calcium influx in human epithelial breast cancer and non-tumorigenic cells occurs through Ca2+ entry pathways with different permeabilities to divalent cations.
The operation of capacitative Ca(2+) entry (CCE) in human breast cancer (SKBR3) and non-tumorigenic (HBL100) cell lines was investigated as an alternative Ca(2+) entry route in these cells. Ca(2+) readdition after thapsigargin-induced store depletion showed activation of CCE in both cell lines. SKBR3 cells exhibited retarded store depletion and CCE decay kinetics compared to the non-tumorigenic HBL100 cells, suggesting alterations in Ca(2+) homeostasis. CCE was also highly permeable to Mn(2+) and to a lesser extent to Sr(2+), but not to Ba(2+). In HBL100 cells, CCE is contributed (30%) by a Ca(2+)/Mn(2+) permeable route insensitive to low (1 microM) Gd(3+) and a Ca(2+)/Sr(2+)/Mn(2+) permeable non-selective pathway (70%) sensitive to 1 microM Gd(3+). In SKBR3 cells, the relative contribution to CCE of both routes was opposite to that in non-tumorigenic cells. Topics: Breast Neoplasms; Calcium; Carcinogens; Cations, Divalent; Cell Line; Cell Membrane Permeability; Enzyme Inhibitors; Epithelial Cells; Humans; Ion Channels; Thapsigargin; Tumor Cells, Cultured | 2003 |
Effect of diethylstilbestrol on Ca2+ handling and cell viability in human breast cancer cells.
In human breast cancer cells, the effect of the widely prescribed estrogen diethylstilbestrol (DES) on intracellular Ca2+ concentrations ([Ca2+]i) and cell viability was explored by using fura-2 and trypan blue exclusion, respectively. DES caused a rise in [Ca2+]i in a concentration-dependent manner (EC50 = 15 microM). DES-induced [Ca2+]i rise was reduced by 80 % by removal of extracellular Ca2+. DES-induced Mn(2+)-associated quench of intracellular fura-2 fluorescence also suggests that DES induced extracellular Ca2+ influx. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of DES on [Ca2+]i was greatly inhibited. Conversely, pretreatment with DES to deplete intracellular Ca2+ stores totally prevented thapsigargin from releasing more Ca2+, whereas ionomycin added afterward still released some Ca2+. These findings suggest that in human breast cancer cells, DES increases [Ca2+]i by stimulating extracellular Ca2+ influx and also by causing intracellular Ca2+ release from the endoplasmic reticulum. Acute trypan blue exclusion studies suggest that 10-20 NM DES killed cells in a time-dependent manner. Topics: Antineoplastic Agents, Hormonal; Breast Neoplasms; Calcium; Calcium Signaling; Cell Survival; Diethylstilbestrol; Enzyme Inhibitors; Female; Humans; Thapsigargin; Tumor Cells, Cultured | 2003 |
Insulin-like growth factor binding protein-3 increases intracellular calcium concentrations in MCF-7 breast carcinoma cells.
Insulin-like growth factor binding protein-3, IGFBP-3, specifically binds to IGFs with high affinity, but it is also capable of modulating the IGF-I signalling pathway or inducing apoptosis independently of its binding to IGFs. The molecular mechanisms underlying the action of IGFBP-3 have not been elucidated. In this study, we have demonstrated that binding of IGFBP-3 to a cell surface receptor in MCF-7 breast carcinoma cells induces a rapid and transient increase in intracellular free calcium. This increase was mediated via a pertussis toxin-sensitive pathway, indicating that the IGFBP-3 receptor may be specifically coupled to a Gi protein. The effect of IGFBP-3 on calcium concentrations was dose-dependent and also occurred when IGFBP-3 was complexed with either IGF-I or heparin, suggesting that the receptor binding site is probably located in the least conserved central domain of IGFBP-3. Neither IGFBP-1, nor IGFBP-5 (structurally the closest to IGFBP-3) altered intracellular calcium concentrations. These results provide evidence that a specific intracellular signal is triggered by IGFBP-3 binding to a cell surface receptor. Topics: Breast Neoplasms; Calcium; Carcinoma; Dose-Response Relationship, Drug; Female; Heparin; Humans; Insulin-Like Growth Factor Binding Protein 1; Insulin-Like Growth Factor Binding Protein 3; Insulin-Like Growth Factor Binding Protein 5; Insulin-Like Growth Factor I; Pertussis Toxin; Receptors, Cell Surface; Thapsigargin; Tumor Cells, Cultured | 2002 |
Evidence on the operation of ATP-induced capacitative calcium entry in breast cancer cells and its blockade by 17beta-estradiol.
Little is known about the regulation of cytosolic calcium Ca(2+) levels ([Ca(2+)](i)) in breast cancer cells. We investigated the existence of capacitative calcium entry (CCE) in the tumorigenic cell line MCF-7 and its responsiveness to ATP. MCF-7 cells express purinergic receptors as well as estrogen receptors (ER). Depletion of calcium stores with thapsigargin (TG, 500 nM) or ATP (10 microM) in the absence of extracellular Ca(2+), resulted in a rapid and transient elevation in [Ca(2+)](i). After recovery of basal levels, Ca(2+) readmission (1.5 mM) to the medium increased Ca(2+) influx (twofold over basal), reflecting pre-activation of a CCE pathway. Cells pretreated with TG were unable to respond to ATP, thus indicating that the same Ca(2+) store is involved in their response. Moreover, IP(3)-dependent ATP-induced calcium mobilization and CCE were completely blocked using compound U-73122, an inhibitor of phospholipase C. Compound 2-APB (75 microM) and Gd(3+) (10 microM), antagonists of the CCE pathway, completely prevented ATP-stimulated capacitative Ca(2+) entry. CCE in MCF-7 cells was highly permeable to Mn(2+) and to the Ca(2+) surrogate Sr(2+). Mn(2+) entry sensitivity to Gd(3+) matched that of the Ca(2+) entry pathway. 17Beta-estradiol blocked ATP-induced CCE, but was without effect on TG-induced CCE. Besides, the estrogen blockade of the ATP-induced CCE was completely abolished by preincubation of the cells with an ER monoclonal antibody. ER alpha immunoreactivity could also be detected in a purified plasma membrane fraction of MCF-7 cells. These results represent the first evidence on the operation of a ATP-responsive CCE pathway in MCF-7 cells and also indicate that 17beta-estradiol interferes with this mechanism by acting at the cell surface level. Topics: Adenosine Triphosphate; Boron Compounds; Breast Neoplasms; Calcium; Calcium Channel Blockers; Cell Line, Tumor; Cell Membrane Permeability; Enzyme Inhibitors; Estradiol; Fura-2; Gadolinium; Humans; Metals, Heavy; Spectrometry, Fluorescence; Thapsigargin | 2002 |
Caffeine eliminates gamma-ray-induced G2-phase delay in human tumor cells but not in normal cells.
It has been known for many years that caffeine reduces or eliminates the G2-phase cell cycle delay normally seen in human HeLa cells or Chinese hamster ovary (CHO) cells after exposure to X or gamma rays. In light of our recent demonstration of a consistent difference between human normal and tumor cells in a G2-phase checkpoint response in the presence of microtubule-active drugs, we examined the effect of caffeine on the G2-phase delays after exposure to gamma rays for cells of three human normal cell lines (GM2149, GM4626, AG1522) and three human tumor cell lines (HeLa, MCF7, OVGI). The G2-phase delays after a dose of 1 Gy were similar for all six cell lines. In agreement with the above-mentioned reports for HeLa and CHO cells, we also observed that the G2-phase delays were eliminated by caffeine in the tumor cell lines. In sharp contrast, caffeine did not eliminate or even reduce the gamma-ray-induced G2-phase delays in any of the human normal cell lines. Since caffeine has several effects in cells, including the inhibition of cAMP and cGMP phosphodiesterases, as well as causing a release of Ca(++) from intracellular stores, we evaluated the effects of other drugs affecting these processes on radiation-induced G2-phase delays in the tumor cell lines. Drugs that inhibit cAMP or cGMP phosphodiesterases did not eliminate the radiation-induced G2-phase delay either separately or in combination. The ability of caffeine to eliminate radiation-induced G2-phase delay was, however, partially reduced by ryanodine and eliminated by thapsigargin, both of which can modulate intracellular calcium, but by different mechanisms. To determine if caffeine was acting through the release of calcium from intracellular stores, calcium was monitored in living cells using a fluorescent calcium indicator, furaII, before and after the addition of caffeine. No calcium release was seen after the addition of caffeine in either OVGI tumor cells or GM2149 normal cells, even though a large calcium release was measured in parallel experiments with ciliary neurons. Thus it is likely that caffeine is eliminating the radiation-induced G2-phase delay through a Ca(++)-independent mechanism, such as the inhibition of a cell cycle-regulating kinase. Topics: 3',5'-Cyclic-AMP Phosphodiesterases; 3',5'-Cyclic-GMP Phosphodiesterases; 4-(3-Butoxy-4-methoxybenzyl)-2-imidazolidinone; Animals; Breast Neoplasms; Caffeine; Calcium Channel Blockers; Calcium Signaling; Carcinoma; Chickens; Demecolcine; Drug Resistance; Female; Fibroblasts; G2 Phase; Gamma Rays; HeLa Cells; Humans; Mitosis; Neoplastic Stem Cells; Neurons; Ovarian Neoplasms; Phosphodiesterase Inhibitors; Quinazolines; Radiation Tolerance; Ryanodine; Ryanodine Receptor Calcium Release Channel; Thapsigargin; Tumor Cells, Cultured | 2002 |
Tamoxifen-induced increases in cytoplasmic free Ca2+ levels in human breast cancer cells.
Tamoxifen has been shown to increase cytoplasmic free Ca2+ levels [Ca2+]i in renal tubular cells and bladder cancer cells, and to after Ca2+ signaling in MCF-7 breast cancer cells. The present study examined the effect of tamoxifen on [Ca2+], in ZR-75-1 human breast cancer cells using fura-2 as an indicator. Tamoxifen increased [Ca2+]i at a concentration above 2 microM with an EC50 of 5 microM. Removing extracellular Ca2+ reduced the response by 48+/-2%. In Ca2+-free medium, after tamoxifen-induced [Ca2+]i increased had returned to baseline, adding 3 mM Ca2+ increased [Ca2+]i in a concentration-dependent manner. Further, pretreatment with 10 microM tamoxifen abolished the [Ca2+]i increase induced by 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor); and conversely, pretreatment with thapsigargin prevented tamoxifen from releasing more Ca2+. Tamoxifen (10 microM)-induced Ca2+ release was not changed by inhibiting phospholipase C activity with 2 microM U73122. Trypan blue exclusion assay revealed that tamoxifen (1-10 microM) did not alter viability after 1 min of incubation, but killed 10% of cells after 3-10 min of incubation. Together, this study shows that tamoxifen (>2 microM) induced a significant, immediate increase in [Ca2+]i in ZR-75-1 breast cancer cells. Tamoxifen acted by releasing Ca2+ from the endoplasmic reticulum Ca2+ stores in a manner independent of phospholipase C activity, and by inducing Ca2+ entry from extracellular medium. Tamoxifen may be of mild cytotoxicity after acute exposure. Topics: Breast Neoplasms; Calcium; Cell Survival; Cytoplasm; Female; Humans; Kinetics; Tamoxifen; Thapsigargin; Tumor Cells, Cultured; Type C Phospholipases | 2002 |
Multidrug-resistant MCF-7 breast cancer cells contain deficient intracellular calcium pools.
Emergence of resistance to antineoplastic drugs poses a major impediment to the successful treatment of breast cancer. We previously reported that human breast carcinoma MCF-7 cells selected for resistance against doxorubicin (MCF-7/DOX cells) expressed high levels of tissue-type transglutaminase (tTGase), a calcium-dependent protein cross-linking enzyme that plays a role in apoptosis. The purpose of this study was to determine the mechanisms by which MCF-7/DOX cells survive and proliferate despite high levels of tTGase expression. Our results demonstrate that the MCF-7/DOX cells contain deficient intracellular calcium pools, which may explain their ability to survive and tolerate the high levels of tTGase expression. Treatment with thapsigargin failed to induce any significant killing of MCF-7/DOX cells. Similar treatment of the drug-sensitive MCF-7 wild-type (MCF-7/WT) cells, however, induced significant apoptosis. Treatment with the ionophore A23187, on the other hand, killed a large percentage of both the MCF-7/DOX and the MCF-7/WT cells. We also established a revertant cell line, MCF-7/RT, from MCF-7/DOX cells to rule out the involvement of P-glycoprotein (P-gp) in these phenomena. Unlike the MCF-7/DOX cells, the MCF-7/RT cells showed no detectable P-gp expression; the MCF-7/RT cells, however, continued to express high levels of tTGase. Moreover, like MCF-7/DOX cells, the MCF-7/RT cells were highly resistant to thapsigargin-induced apoptosis but were sensitive to the ionophore A23187-induced apoptosis. These results suggest that the resistance of MCF7/DOX cells to thapsigargin is linked to their defective intracellular Ca2+ stores, a notion that was directly confirmed by single-cell spectrofluorometric analysis. Topics: Animals; Antineoplastic Agents; Apoptosis; Blotting, Western; Breast Neoplasms; Calcimycin; Calcium; Doxorubicin; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Enzyme Inhibitors; Female; GTP-Binding Proteins; Humans; Ionophores; Mice; Microscopy, Confocal; Protein Glutamine gamma Glutamyltransferase 2; Thapsigargin; Transglutaminases; Tumor Cells, Cultured | 2002 |
Calcium and calpain as key mediators of apoptosis-like death induced by vitamin D compounds in breast cancer cells.
The active form of vitamin D(3) (1,25(OH)(2)D(3)) induces an increase in the intracellular free calcium ([Ca(2+)](i)) and caspase-independent cell death in human breast cancer cells. Here we show that the treatment of MCF-7 breast cancer cells with 1,25(OH)(2)D(3) or its chemotherapeutic analog, EB 1089, releases Ca(2+) from the endoplasmic reticulum. The increase in [Ca(2+)](i) was associated with the activation of a calcium-dependent cysteine protease, mu-calpain. Interestingly, ectopic expression of a calcium-binding protein, calbindin-D(28k), in MCF-7 cells not only attenuated the elevation in [Ca(2+)](i) and calpain activation, but also reduced death triggered by vitamin D compounds. Similarly, the inhibition of calpain activity by structurally unrelated chemical inhibitors increased the survival of the cells and reduces the amount of annexin V-positive cells. Despite the complete absence of effector caspase activation, transmission electron microscopy of MCF-7 cells treated with 1,25(OH)(2)D(3) or EB 1089 revealed apoptosis-like morphology characterized by the condensed cytoplasm, nuclei, and chromatin. Overall, these results suggest that calpain may take over the role of the major execution protease in apoptosis-like death induced by vitamin D compounds. Thus, these compounds may prove useful in the treatment of tumors resistant to therapeutic agents dependent on the classical caspase cascade. Topics: Apoptosis; Breast Neoplasms; Calbindins; Calcitriol; Calcium; Calpain; Female; Humans; S100 Calcium Binding Protein G; Thapsigargin; Tumor Cells, Cultured | 2002 |
Modification of alternative splicing of Bcl-x pre-mRNA in prostate and breast cancer cells. analysis of apoptosis and cell death.
There is ample evidence that deregulation of apoptosis results in the development, progression, and/or maintenance of cancer. Since many apoptotic regulatory genes (e.g. bcl-x) code for alternatively spliced protein variants with opposing functions, the manipulation of alternative splicing presents a unique way of regulating the apoptotic response. Here we have targeted oligonucleotides antisense to the 5'-splice site of bcl-x(L), an anti-apoptotic gene that is overexpressed in various cancers, and shifted the splicing pattern of Bcl-x pre-mRNA from Bcl-x(L) to Bcl-x(S), a pro-apoptotic splice variant. This approach induced significant apoptosis in PC-3 prostate cancer cells. In contrast, the same oligonucleotide treatment elicited a much weaker apoptotic response in MCF-7 breast cancer cells. Moreover, although the shift in Bcl-x pre-mRNA splicing inhibited colony formation in both cell lines, this effect was much less pronounced in MCF-7 cells. These differences in responses to oligonucleotide treatment were analyzed in the context of expression of Bcl-x(L), Bcl-x(S), and Bcl-2 proteins. The results indicate that despite the presence of Bcl-x pre-mRNA in a number of cell types, the effects of modification of its splicing by antisense oligonucleotides vary depending on the expression profile of the treated cells. Topics: Alternative Splicing; Apoptosis; bcl-X Protein; Breast Neoplasms; Cell Death; Female; Flow Cytometry; Genes, Regulator; Genetic Variation; Humans; Male; Prostatic Neoplasms; Protein Isoforms; Proto-Oncogene Proteins c-bcl-2; Reverse Transcriptase Polymerase Chain Reaction; RNA Precursors; Thapsigargin; Transfection; Tumor Cells, Cultured | 2001 |
SIMS ion microscopy in cancer research: single cell isotopic imaging for chemical composition, cytotoxicity and cell cycle recognition.
A secondary ion mass spectrometry (SIMS) based isotopic imaging technique was used for studies of i/ total calcium stored in cancerous and normal cell lines and ii/ intracellular chemical composition (total K, Na, and Ca) in relation to DNA staining patterns in taxol-treated breast cancer cells. A Cameca IMS-3f ion microscope with 0.5 microm spatial resolution was used. Observations were made on frozen freeze-dried cells. In MCF-10A non-tumorigenic breast epithelial cells, the nucleus contained 0.6 +/- 0.10 mM and the cytoplasm 1.1 +/- 0.30 mM total calcium per unit volume (mean +/- S.D.). MCF-7 tumorigenic breast epithelial cells revealed an abnormal total calcium distribution. Their nuclei and cytoplasm were not significantly different in stored calcium concentrations (0.5 +/- 0.08 mM total calcium in the nucleus and 0.6 +/- 0.07 mM in the cytoplasm). Furthermore, in MCF-7 cells the cytoplasmic total calcium is significantly less than in MCF-10A cells. Both cell lines contained approximately 150 mM intracellular potassium and 13 mM sodium. As 80% of the cytoplasmic total calcium pool in MCF-10A cells could be released with thapsigargin, it is plausible that the calcium storage capacity of the endoplasmic reticulum in tumorigenic MCF-7 cells is compromised. Correlative SIMS and confocal laser scanning microscopy (CLSM) revealed an increase in intracellular sodium and a redistribution of calcium in taxol-arrested M-phase cells prior to any noticeable DNA fragmentation. This novel correlative approach opens new avenues of research for understanding intracellular ionic composition in relation to therapeutic cytotoxicity. Other valuable features of SIMS for cancer research shown in this study include subcellular imaging of calcium influx using 44Ca, 127I from iododeoxyuridine for S-phase recognition, and 19F from fluorinated deoxyglucose. Topics: Animals; Breast; Breast Neoplasms; Calcium; Cations; Cell Cycle; Cell Death; Cell Line; Epithelial Cells; Female; Fluorine; Fluorodeoxyglucose F18; Freeze Drying; HeLa Cells; Humans; Kidney; Microscopy, Confocal; Pyrimidines; S Phase; Spectrometry, Mass, Secondary Ion; Swine; Thapsigargin; Thiones; Tumor Cells, Cultured | 2001 |
Delayed micromolar elevation in intracellular calcium precedes induction of apoptosis in thapsigargin-treated breast cancer cells.
Thapsigargin (TG), a highly specific inhibitor of the sarcoplasmic reticulum and endoplasmic reticulum Ca2+-ATPase pump, can induce apoptosis in a variety of epithelial and lymphoid cell types. In prostate cancer cell lines, TG induces an initial 5- to 10-fold elevation of intracellular calcium ([Ca2+]i) within a few minutes of exposure. With prolonged exposure times (i.e., 12-36 h) a second elevation of [Ca2+]i to >10 microM is observed. In this study, the human breast carcinoma cell lines MCF-7 and MDA MB 468 cells were used to determine the temporal relationship between TG-induced elevation of [Ca2+]i and activation of programmed cell death. Using a microinjection method that allows for long-term analysis of [Ca2+]i changes, we found that after TG exposure, calcium measurements in these cells demonstrated an initial rise (>4-fold) in [Ca2+]i that occurred within minutes and returned to baseline within a few hours. With prolonged TG exposure, the cells underwent a second elevation (>5 microM) of [Ca2+]i occurring stochastically between 12 and 36 h after the initial exposure to TG. Both of the cell lines were growth-inhibited by 100 nM TG after only 1 h of exposure, but clonogenic ability in the MCF-7 cells was significantly reduced only after 48 h of exposure. The induction of apoptosis by TG was demonstrated by morphological changes typical for programmed cell death and DNA fragmentation (both high molecular weight and oligonucleosomal-sized fragments were detected) after 48 h of treatment. TG induction of apoptosis in these breast cancer cells occurred subsequent to the secondary rise in [Ca2+]i, which confirmed that this secondary rise in [Ca2+]i is not prostate cancer-specific. The secondary rise in [Ca2+]i to micromolar levels may directly activate the endonucleases responsible for DNA fragmentation that occurs as part of the apoptotic process. These studies indicate that TG is an active agent in vitro against breast cancer cells. Inactive prodrug analogues of TG are currently being developed that can be activated by tissue-specific proteases, and further pursuit of this strategy as a potential treatment for breast cancer is warranted. Topics: Apoptosis; Breast Neoplasms; Calcium; Cell Division; Cell Survival; Female; Humans; Kinetics; Thapsigargin; Time Factors; Tumor Cells, Cultured; Tumor Stem Cell Assay | 2000 |
Endothelial cell intracellular Ca2+ concentration is increased upon breast tumor cell contact and mediates tumor cell transendothelial migration.
Tumor cell extravasation is a determinant step in the process of hematogenous metastasis. The signal transduction pathways involved in the interactions between tumor cells and the vascular endothelium during transendothelial migration are still undefined. In the present study, we have investigated the influence of human breast adenocarcinoma cells (MCF7) on human umbilical vein endothelial cell (HUVEC) intracellular Ca2+ concentration ([Ca2+]i). We show that the contact between MCF7 cells and a confluent HUVEC monolayer induces an immediate and transient increase in HUVEC [Ca2+]i. This [Ca2+]i rise could not be elicited by tumor cell-conditioned medium, isolated tumor cell membranes, inert beads or normal breast epithelial cells, demonstrating the involvement of specific recognition mechanisms between MCF7 cells and HUVEC. Depletion of HUVEC intracellular Ca2+ stores by the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin as well as the selective depletion of inositol 1,4,5-triphosphate (IP3)-sensitive Ca2+ stores by prior activation of HUVEC using histamine resulted in a complete inhibition of tumor cell-induced [Ca2+]i elevation. Similar results were obtained when HUVEC monolayers were treated with the tyrosine kinase inhibitor herbimycin A, suggesting a role for tyrosine kinase-associated cell surface receptors in tumor cell-endothelial cell interactions. The depletion of HUVEC intracellular Ca2+ stores by thapsigargin was also shown to delay MCF7-induced endothelial cell disjunction, to prevent their spreading on the subendothelial extracellular matrix and transendothelial migration in vitro. These results suggest that transient changes in endothelial [Ca2+]i may govern multiple steps of tumor cell extravasation. Topics: Adenocarcinoma; Breast Neoplasms; Calcium; Cell Communication; Cell Movement; Endothelium, Vascular; Enzyme Inhibitors; Female; Humans; Protein-Tyrosine Kinases; Thapsigargin; Tumor Cells, Cultured; Umbilical Veins | 1998 |
Baculovirus p35 and Z-VAD-fmk inhibit thapsigargin-induced apoptosis of breast cancer cells.
Programmed cell death, or apoptosis, is inhibited by the antiapoptotic oncogene, Bcl-2, and is mediated by a cascade of aspartate-specific cysteine proteases, or caspases, related to interleukin 1-beta converting enzyme. Depending on cell type, apoptosis can be induced by treatment with thapsigargin (TG); a selective inhibitor of the endoplasmic reticulum-associated calcium-ATPase. The role of caspases in mediating TG-induced apoptosis was investigated in the Bcl-2-negative human breast cancer cell line, MDA-MB-468. Apoptosis developed in MDA-MB-468 cells over a period of 24-72 h following treatment with 100 nM TG, and was prevented by Bcl-2 overexpression. TG-induced apoptosis was associated with activation of caspase-3 and was inhibited by stable expression of the baculovirus p35 protein, an inhibitor of caspase activity. Also, TG-induced apoptosis was inhibited by treating cells with Z-VAD-fmk, a cell-permeable fluoromethylketone inhibitor of caspases. These findings indicate that TG-induced apoptosis of MDA-MB-468 breast cancer cells is subject to inhibition by Bcl-2 and is mediated by caspase activity. This model system should be useful for further investigation directed toward understanding the role of calcium in signaling apoptosis, and its relationship to Bcl-2 and the caspase proteolytic cascade. Topics: Amino Acid Chloromethyl Ketones; Apoptosis; Breast Neoplasms; Caspase 3; Caspases; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Enzyme Activation; Humans; Inhibitor of Apoptosis Proteins; Proto-Oncogene Proteins c-bcl-2; Signal Transduction; Thapsigargin; Tumor Cells, Cultured; Viral Proteins | 1997 |