thapsigargin has been researched along with Bone-Neoplasms* in 5 studies
5 other study(ies) available for thapsigargin and Bone-Neoplasms
Article | Year |
---|---|
Econazole induces increases in free intracellular Ca2+ concentrations in human osteosarcoma cells.
Econazole is an antifungal drug with different in vitro effects. However, econazole's effect on osteoblast-like cells is unknown. In human MG63 osteosarcoma cells, the effect of econazole on intracellular Ca2+ concentrations ([Ca2+]i) was explored by using fura-2. At a concentration of 0.1 microM, econazole started to cause a rise in [Ca2+]i in a concentration-dependent manner. Econazole-induced [Ca2+]i rise was reduced by 74% by removal of extracellular Ca2+. The econazole-induced Ca2+ influx was mediated via a nimodipine-sensitive pathway. In Ca2+ -free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca+ -ATPase, caused a [Ca2+]i rise, after which the increasing effect of econazole on [Ca2+]i was abolished. Pretreatment of cells with econazole to deplete Ca2+ stores totally prevented thapsigargin from releasing Ca2+. U73122, an inhibitor of phospholipase C, abolished histamine (an inositol 1,4,5-trisphosphate-dependent Ca2+ mobilizer)-induced, but not econazole-induced, [Ca2+]i rise. Econazole inhibited 76% of thapsigargin-induced store-operated Ca2+ entry. These findings suggest that in MG63 osteosarcoma cells, econazole increases [Ca2+]i by stimulating Ca2+ influx and Ca2+ release from the endoplasmic reticulum via a phospholipase C-independent manner. In contrast, econazole acts as a potent blocker of store-operated Ca2+ entry. Topics: Antifungal Agents; Bone Neoplasms; Calcium; Calcium Channel Blockers; Calcium Signaling; Cell Line, Tumor; Dose-Response Relationship, Drug; Econazole; Endoplasmic Reticulum; Enzyme Inhibitors; Humans; Nimodipine; Osteosarcoma; Thapsigargin; Time Factors | 2005 |
Thapsigargin potentiates TRAIL-induced apoptosis in giant cell tumor of bone.
TNF-related apoptosis-inducing ligand (TRAIL) is capable of causing apoptosis in tumor cells but not in normal cells; however, it has been shown that certain types of tumor cells are resistant to TRAIL-induced apoptosis. In this study, we examined the potentiation of TRAIL-induced apoptosis in the stromal-like tumor cells of giant cell tumor of bone (GCT). We show that both mRNA and protein of TRAIL receptors-death receptors (DR4, DR5) and decoy receptors (DcR1, DcR2) are present in GCT stromal tumor cells. However, the expression profiles in all GCT clones tested do not readily correlate with their differential sensitivity to TRAIL. To this end, we selected thapsigargin (TG), an agent known to cause perturbations in intracellular Ca(2+) homeostasis to enhance the apoptotic action of TRAIL. When added alone, neither TRAIL nor TG induces a therapeutically important magnitude of cell death in GCT tumor cells. Interdependently, scheduled treatment of the cultures with TG followed by subsequent addition of TRAIL resulted in a significant synergistic apoptotic activity, while in contrast, no obvious augmentation was seen when TRAIL was added before TG. This effect was in accord with our observation that TG predominantly up-regulated both mRNA and protein expression of DR5, as well as DR4 mRNA while down-regulating DcR1 protein in GCT stromal-like tumor cells. Taken together, our findings suggest that TG is able to sensitize tumor cells of GCT to TRAIL-induced cell death, perhaps in part through up-regulating the death receptor DR5 and down-regulating the decoy receptor DcR1. These findings provide an additional insight into the design of new treatment modalities for patients suffering from GCT. Topics: Apoptosis; Apoptosis Regulatory Proteins; Bone Neoplasms; Cell Survival; Dose-Response Relationship, Drug; Drug Synergism; Giant Cell Tumor of Bone; Humans; Membrane Glycoproteins; Receptors, Tumor Necrosis Factor; Thapsigargin; TNF-Related Apoptosis-Inducing Ligand; Tumor Cells, Cultured; Tumor Necrosis Factor-alpha | 2004 |
Thiol oxidation by 2,2'-dithiodipyridine induced calcium mobilization in MG63 human osteosarcoma cells.
2,2'-dithiodipyridine (2,2'-DTDP), a reactive disulphide that mobilizes Ca(2+) in muscle, induced an increase in cytoplasmic free Ca(2+)concentrations ([Ca(2+)](i)) in MG63 human osteosarcoma cells loaded with the Ca(2+)-sensitive dye fura-2. 2,2'-DTDP acted in a concentration-independent manner with an EC(50) of 50 microM. The Ca(2+) signal comprised an initial spike and a prolonged increase. Removing extracellular Ca(2+) did not alter the Ca(2+) signal, suggesting that the Ca(2+) signal was due to store Ca(2+) release. In Ca(2+)-free medium, the 2,2'-DTDP-induced [Ca(2+)](i) increase was not changed by depleting store Ca(2+) with 50 microM bredfeldin A (a Golgi apparatus permeabilizer), 2 microM carbonylcyanide m-chlorophenylhydrazone (CCCP, a mitochondrial uncoupler), 1 microM thapsigargin (an endoplasmic reticulum Ca(2+)pump inhibitor) or 5 microM ryanodine. Conversely, 2,2'-DTDP pretreatment abolished CCCP and thapsigargin-induced [Ca(2+)](i) increases. 2,2'-DTDP-induced Ca(2+) signals in Ca(2+)-containing medium were not affected by modulation of protein kinase C activity or suppression of phospholipase C activity. However, 2,2'-DTDP-induced Ca(2+) release was inhibited by a thiol-selective reducing reagent, dithiothreitol (5-25 microM) in a concentration-dependent manner. Collectively, this study shows that 2,2'-DTDP induced [Ca(2+)](i) increases in human osteosarcoma cells via releasing store Ca(2+)from multiple stores in a manner independent of protein kinase C or phospholipase C activity. The 2,2'-DTDP-induced store Ca(2+) release appeared to be dependent on oxidation of membranes. Topics: 2,2'-Dipyridyl; Bone Neoplasms; Brefeldin A; Calcium; Calcium Signaling; Disulfides; Enzyme Inhibitors; Fluorescent Dyes; Fura-2; Humans; Osteosarcoma; Oxidation-Reduction; Protein Kinase C; Protein Synthesis Inhibitors; Reducing Agents; Second Messenger Systems; Sulfhydryl Compounds; Thapsigargin; Tumor Cells, Cultured; Type C Phospholipases | 2003 |
Direct measurement of hormone-induced acidification in intact bone.
Previous findings have shown that osteoblasts respond to parathyroid hormone (PTH) with an increase in extracellular acidification rate (ECAR) in addition to the known effect of PTH to increase local acidification by osteoclasts. We, therefore, investigated use of the Cytosensor to measure the ECAR response of whole intact bone to PTH employing microphysiometry. The Cytosensor measures a generic metabolic increase of cells to various agents. Using neonatal mouse calvaria, we found that the area surrounding the sagittal suture was particularly responsive to PTH. In this bone, the increase in ECAR was slower to develop (6 minutes) and more persistent than in cultured human osteoblast-like SaOS-2 cells and was preceded by a brief decrease in ECAR. Salmon calcitonin also produced an increase in ECAR in this tissue but with a different pattern than that elicited by PTH. Because PTH stimulates osteoclastic bone resorption in mouse calvaria via a cyclic adenosine monophosphate (cAMP)-mediated mechanism, we showed that the adenylyl cyclase activator forskolin also stimulated ECAR in this tissue. When the protein kinase A (PKA) pathway was activated by maintaining a high intracellular concentration of cAMP using N6-2'-0-dibutyryladenosine-cAMP (db-cAMP), there was a reduction of PTH-induced acidification, while isobutylmethylxanthine pretreatment potentiated the PTH-induced acidification, consistent with a PKA-mediated pathway. Thapsigargin and the protein kinase C (PKC) activator phorbol myristate acetate had no effect on the PTH-induced increase in ECAR in calvaria, indicating that PKC does not play a major role in the ECAR response in intact bone. These results indicate the utility of using microphysiometry to study ECAR responses in intact tissue and should enable elucidation of the relative importance of extracellular acidification by osteoblasts and osteoclasts to the anabolic and catabolic activities of PTH, respectively. Topics: 1-Methyl-3-isobutylxanthine; Adenylyl Cyclases; Animals; Animals, Newborn; Bone and Bones; Bone Neoplasms; Bucladesine; Calcium Signaling; Carbonic Anhydrases; Colforsin; Cyclic AMP-Dependent Protein Kinases; Enzyme Activation; Extracellular Space; Humans; Hydrogen-Ion Concentration; Mice; Organ Culture Techniques; Organ Specificity; Osteoblasts; Osteosarcoma; Parathyroid Hormone; Protein Kinase C; Second Messenger Systems; Skull; Tetradecanoylphorbol Acetate; Thapsigargin; Tumor Cells, Cultured | 2000 |
Inhibitors of ER Ca(2+)-ATPase activity deplete the ATP- and thrombin-sensitive Ca2+ pool in UMR 106-01 osteosarcoma cells.
While calcium release from intracellular stores is a signaling mechanism used universally by cells responding to hormones and growth factors, the compartmentalization and regulated release of calcium is cell type-specific. We employed thapsigargin and 2,5,-di-(tert-butyl)-1,4-benzohydroquinone (tBuHQ), two inhibitors of endoplasmic reticulum (ER) Ca(2+)-ATPase activity which block the transport of Ca2+ into intracellular stores, to characterize free Ca2+ compartmentalization in UMR 106-01 osteoblastic osteosarcoma cells. Each drug elicited transient increases in cytosolic free Ca2+ ([Ca2+]i), followed by a stable plateau phase which was elevated above the control [Ca2+]i. The release of Ca2+ from intracellular stores was coupled to an increased plasma membrane Ca2+ permeability which was not due to L-type Ca2+ channels. Thapsigargin and tBuHQ emptied the intracellular calcium pool which was released in response to either ATP or thrombin, identifying it as the inositol 1,4,5-trisphosphate-sensitive calcium store. The results of sequential and simultaneous additions of thapsigargin and tBuHQ indicate that both drugs depleted the same Ca2+ store and inhibited the same Ca(2+)-ATPase activity. Topics: Adenosine Triphosphate; Animals; Antioxidants; Bone Neoplasms; Calcium; Calcium-Transporting ATPases; Cell Membrane; Cell Membrane Permeability; Cytosol; Egtazic Acid; Endoplasmic Reticulum; Fura-2; Hydroquinones; Inositol 1,4,5-Trisphosphate; Nifedipine; Osteoblasts; Osteosarcoma; Terpenes; Thapsigargin; Thrombin; Tumor Cells, Cultured | 1995 |