thailandepsin-a has been researched along with Carcinoma--Neuroendocrine* in 2 studies
2 other study(ies) available for thailandepsin-a and Carcinoma--Neuroendocrine
Article | Year |
---|---|
Antineoplastic effects of histone deacetylase inhibitors in neuroendocrine cancer cells are mediated through transcriptional regulation of Notch1 by activator protein 1.
Notch signaling is minimally active in neuroendocrine (NE) cancer cells. While histone deacetylase inhibitors (HDACi) suppress NE cancer growth by inducing Notch, the molecular mechanism underlying this interplay has not yet been defined. NE cancer cell lines BON, H727, and MZ-CRC-1 were treated with known HDACi Thailadepsin-A (TDP-A) and valproic acid (VPA), and Notch1 mRNA expression was measured with RT-PCR. Truncated genomic fragments of the Notch1 promotor region fused with luciferase reporter were used to identify the potential transcription factor (TF) binding site. The key regulatory TF was identified with the electrophoretic mobility shift assay (EMSA). The effect of HDACi on Notch1 level was determined before and after silencing the TF. TDP-A and VPA induced Notch1 mRNA in a dose-dependent manner. A functional DNA motif at -80 to -52 from the Notch1 start codon responsible for the HDACi-dependent Notch1 induction was identified. Mutation of this core sequence failed to induce luciferase activity despite HDACi treatment. EMSA showed the greatest gel shift with AP-1 in nuclear extracts. Knockdown of AP-1 significantly attenuated the effect of HDACi on Notch1 induction. Interestingly, AP-1 transfection did not alter Notch1 level, suggesting that AP-1 is necessary but insufficient for HDACi activation of Notch1. Therefore, AP-1 is the TF that binds to a specific transcription-binding site within the Notch1 promotor region to trigger Notch1 transcription. Elucidating the HDACi activation mechanism may lead to the development of novel therapeutic options against NE cancers and facilitate the identification of clinical responders and prevent adverse effects. Topics: Antineoplastic Agents; Carcinoma, Neuroendocrine; Cell Line, Tumor; Depsipeptides; Gene Expression Regulation, Neoplastic; Histone Deacetylase Inhibitors; Humans; Mutation; Promoter Regions, Genetic; Receptor, Notch1; Signal Transduction; Transcription Factor AP-1; Valproic Acid | 2017 |
Thailandepsin A-loaded and octreotide-functionalized unimolecular micelles for targeted neuroendocrine cancer therapy.
Due to the overexpression of somatostatin receptors in neuroendocrine (NE) cancers, drug nanocarriers conjugated with somatostatin analogs, such as octreotide (OCT), for targeted NE cancer therapy may offer increased therapeutic efficacies and decreased adverse effects. In this study, OCT-functionalized unimolecular micelles were prepared using individual hyperbranched polymer molecules consisting of a hyperbranched polymer core (Boltorn(®) H40) and approximately 25 amphiphilic polylactide-poly(ethlyene glycol) (PLA-PEG) block copolymer arms (H40-PLA-PEG-OCH3/OCT). The resulting micelles, exhibiting a uniform core-shell shape and an average hydrodynamic diameter size of 66 nm, were loaded with thailandepsin-A (TDP-A), a relatively new naturally produced histone deacetylase (HDAC) inhibitor. In vitro studies using flow cytometry and confocal laser scanning microscopy (CLSM) demonstrated that OCT conjugation enhanced the cellular uptake of the unimolecular micelles. Consequently, TDP-A-loaded and OCT-conjugated micelles exhibited the highest cytotoxicity and caused the highest reduction of NE tumor markers. Finally, the in vivo studies on NE cancer bearing nude mice demonstrated that TDP-A-loaded and OCT-conjugated micelles possessed superior anticancer activity in comparison with other TDP-A formulations or drug alone, while showing no detectable systemic toxicity. Thus, these TDP-A-loaded and OCT-conjugated micelles offer a promising approach for targeted NE cancer therapy. Topics: Animals; Antineoplastic Agents, Hormonal; Carcinoma, Neuroendocrine; Cell Line, Tumor; Depsipeptides; Drug Carriers; Drug Delivery Systems; Histone Deacetylase Inhibitors; Humans; Lactates; Male; Mice, Nude; Micelles; Octreotide; Polyethylene Glycols | 2016 |