tgx-221 and Disease-Models--Animal

tgx-221 has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for tgx-221 and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Bleeding response induced by anti-thrombotic doses of a phosphoinositide 3-kinase (PI3K)-β inhibitor in mice.
    Thrombosis research, 2011, Volume: 127, Issue:6

    Published evidence suggests that phosphoinositide 3 kinase-β (PI3K-β) plays an important role in platelet aggregation and shear activation. TGX-221 is a selective PI3K-β inhibitor with a good separation of anti-thrombotic efficacy and bleeding (therapeutic index) in rats. Our goal was to further evaluate potential of a PI3K-β inhibitor as an anti-thrombotic agent by determining the therapeutic index in another species and efficacy model. Reported effects of TGX-221 in rats were also confirmed.. TGX-221 (0.3 + 0.3, 1 + 1, 3 + 3 mg/kg + mg/kg/hr, i.v.) or vehicle was given to mice starting 15 min prior to FeCl(3) arterial thrombosis (AT), tail or kidney bleeding time (BT) procedures.. Integrated blood flow over 30 min (%baseline mean ± SEM) improved (p < 0.05) with TGX-221 doses 1 + 1 (49 ± 13.9%) and 3+3 (88 ± 10.6%) versus 0.3 + 0.3 (10 ± 0.8%) and vehicle (10 ± 0.6%). Vascular patency (non-occluded/total arteries) improved (p < 0.01) with TGX-221 doses of 3 + 3 (7/8), but not 0.3 + 0.3 (0/8) or 1 + 1 (4/8) versus vehicle (0/8). Tail BT (sec) increased (p < 0.05) with TGX-221 doses of 3 + 3 (median 1560) and 1 + 1 (1305) versus vehicle (225). Mean renal BT (sec) increased (p < 0.05) in all TGX-221 groups (3 + 3: 510 + 26; 1 + 1: 478 + 41; 0.3 + 0.3: 246 + 37) versus vehicle (123 + 9). For comparison, a reference agent, aspirin (30 mpk, i.p.) increased tail BT 1.9X and renal BT 2.6X.. The novel finding of a clear impact on hemostasis by TGX-221 was demonstrated by increased bleeding in two models in mice at anti-thrombotic doses. The results suggest a narrower therapeutic index for this PI3K-β inhibitor than previously recognized, at least for this species.

    Topics: Animals; Bleeding Time; Blood Platelets; Carotid Artery Thrombosis; Disease Models, Animal; Fibrinolytic Agents; Hemorrhage; Humans; Kidney; Male; Mice; Mice, Inbred C57BL; Morpholines; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Pyrimidinones; Rats; Rats, Sprague-Dawley; Tail

2011