tetrodotoxin has been researched along with Temporomandibular-Joint-Disorders* in 2 studies
2 other study(ies) available for tetrodotoxin and Temporomandibular-Joint-Disorders
Article | Year |
---|---|
Expression of 5-HT3 receptors and TTX resistant sodium channels (Na(V)1.8) on muscle nerve fibers in pain-free humans and patients with chronic myofascial temporomandibular disorders.
Previous studies have shown that 5-HT3-antagonists reduce muscle pain, but there are no studies that have investigated the expression of 5-HT3-receptors in human muscles. Also, tetrodotoxin resistant voltage gated sodium-channels (NaV) are involved in peripheral sensitization and found in trigeminal ganglion neurons innervating the rat masseter muscle. This study aimed to investigate the frequency of nerve fibers that express 5-HT3A-receptors alone and in combination with NaV1.8 sodium-channels in human muscles and to compare it between healthy pain-free men and women, the pain-free masseter and tibialis anterior muscles, and patients with myofascial temporomandibular disorders (TMD) and pain-free controls.. Three microbiopsies were obtained from the most bulky part of the tibialis and masseter muscles of seven and six healthy men and seven and six age-matched healthy women, respectively, while traditional open biopsies were obtained from the most painful spot of the masseter of five female patients and from a similar region of the masseter muscle of five healthy, age-matched women. The biopsies were processed by routine immunohistochemical methods. The biopsy sections were incubated with monoclonal antibodies against the specific axonal marker PGP 9.5, and polyclonal antibodies against the 5-HT3A-receptors and NaV1.8 sodium-channels.. A similar percentage of nerve fibers in the healthy masseter (85.2%) and tibialis (88.7%) muscles expressed 5-HT3A-receptors. The expression of NaV1.8 by 5-HT3A positive nerve fibers associated with connective tissue was significantly higher than nerve fibers associated with myocytes (P < .001). In the patients, significantly more fibers per section were found with an average of 3.8 ± 3 fibers per section in the masseter muscle compared to 2.7 ± 0.2 in the healthy controls (P = .024). Further, the frequency of nerve fibers that co-expressed NaV1.8 and 5-HT3A receptors was significantly higher in patients (42.6%) compared to healthy controls (12.0%) (P < .001).. This study showed that the 5-HT3A-receptor is highly expressed in human masseter and tibialis muscles and that there are more nerve fibers that express 5-HT3A-receptors in the masseter of women with myofascial TMD compared to healthy women. These findings indicate that 5-HT3-receptors might be up-regulated in myofascial TMD and could serve as potential biomarkers of chronic muscle pain. Topics: Adult; Chronic Disease; Female; Humans; Male; Masseter Muscle; Muscle, Skeletal; NAV1.8 Voltage-Gated Sodium Channel; Nerve Fibers; Receptors, Serotonin, 5-HT3; Sodium Channel Blockers; Temporomandibular Joint Disorders; Tetrodotoxin | 2014 |
Inflammation alters sodium currents and excitability of temporomandibular joint afferents.
Inflammation-induced changes in voltage-gated sodium currents (I(Na)) in primary afferent neurons may contribute to hyperexcitability and pain. The present study was designed to test the hypothesis that persistent inflammation of the temporomandibular joint (TMJ) increases I(Na) in TMJ afferents. Acutely dissociated retrogradely labeled TMJ afferents were studied using whole-cell patch clamp techniques three days following Complete Freund's Adjuvant-induced inflammation of the TMJ. Inflammation was associated with a decrease in tetrodotoxin (TTX)-sensitive Na+ conductance and no significant change in slowly inactivating TTX-resistant Na+ conductance. However, inflammation increased the excitability of TMJ afferents. These results suggest that changes in ion channels other than those underlying TTX-sensitive and the slowly inactivating TTX-resistant Na+ conductance are likely to account for the inflammation-induced increase in the excitability of TMJ afferents. Topics: Action Potentials; Afferent Pathways; Animals; Cells, Cultured; Inflammation; Ion Channel Gating; Male; Neurons, Afferent; Rats; Rats, Sprague-Dawley; Sodium; Sodium Channels; Temporomandibular Joint; Temporomandibular Joint Disorders; Tetrodotoxin; Trigeminal Ganglion | 2005 |