tetrodotoxin has been researched along with Morphine-Dependence* in 2 studies
2 other study(ies) available for tetrodotoxin and Morphine-Dependence
Article | Year |
---|---|
Local opiate withdrawal in locus coeruleus neurons in vitro.
Noradrenergic neurons of the brain nucleus locus coeruleus (LC) become hyperactive during opiate withdrawal. It has been uncertain to what extent such hyperactivity reflects changes in intrinsic properties of these cells. The effects of withdrawal from chronic morphine on the activity of LC neurons were studied using intracellular recordings in rat brain slices. LC neurons in slices from chronically morphine-treated rats exhibited more than twice the frequency of spontaneous action potentials after naloxone compared with LC neurons from control rats. However, after naloxone treatment, the resting membrane potential (MP) of LC neurons from dependent rats was not significantly different from that in control rats. Neither resting MP nor spontaneous discharge rate (SDR) was altered by naloxone in LC neurons from control rats. Neither kynurenic acid nor a cocktail of glutamate and GABA antagonists (6-cyano-7-nitroquinoxalene-2,3-dione + 2-amino-5-phosphonopentanoic acid + bicuculline) blocked the hyperactivity of LC neurons precipitated by naloxone in slices from morphine-dependent rats. The effects of ouabain on MP and SDR were similar in LC neurons from control and morphine-dependent rats. These results indicate that an adaptive change in glutamatergic or GABAergic synaptic mechanisms or altered Na/K pump activity does not underlie the withdrawal-induced activation of LC neurons in vitro. Specific inhibitors of protein kinase A [Rp-cAMPS or N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide (H-89)] partially suppressed the withdrawal hyperactivity of LC neurons, and activators of cAMP (forskolin) or protein kinase A (Sp-cAMPS) increased the discharge rate of LC neurons from control rats. These results suggest that upregulation of cAMP-dependent protein kinase A during chronic morphine treatment is involved in the withdrawal-induced hyperactivity of LC neurons. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Analgesics, Opioid; Animals; Barium; Bicuculline; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; GABA Antagonists; In Vitro Techniques; Kynurenic Acid; Locus Coeruleus; Male; Membrane Potentials; Morphine; Morphine Dependence; Naloxone; Narcotic Antagonists; Neurons; Ouabain; Rats; Rats, Sprague-Dawley; Substance Withdrawal Syndrome; Tetrodotoxin; Thionucleotides | 2001 |
Tolerance to mu-opioid receptor agonists but not cross-tolerance to gamma-aminobutyric acid(B) receptor agonists in arcuate A12 dopamine neurons with chronic morphine treatment.
The present study examined the potential for cross-tolerance development between mu-opioid and gamma-aminobutyric acidB receptor agonists, in hypothalamic arcuate neurons, resulting from chronic morphine treatment. Intracellular recordings were made in hypothalamic slices prepared from ovariectomized female guinea pigs. The mu-opioid receptor agonist D-Ala2,N-Me-Phe4,Gly-ol5-enkephalin and the gamma-aminobutyric acidB receptor agonist baclofen produced dose-dependent membrane hyperpolarizations of arcuate neurons. The reversal potential for both agonist-induced hyperpolarizations was near -95 mV, indicative of the activation of an underlying K+ conductance. Coadministration of maximally effective concentrations of D-Ala2,N-Me-Phe4,Gly-ol5-enkephalin and baclofen produced a response that was not additive, indicating a convergence onto a common K+ channel. In arcuate neurons, including a subset that was immunopositive for tyrosine hydroxylase, chronic morphine treatment for 4 to 7 days produced a 3.2-fold reduction in the potency, with no change in the efficacy, of D-Ala2,N-Me-Phe4,Gly-ol5-enkephalin. In contrast, it affected neither the potency nor the efficacy of baclofen. Therefore, chronic morphine exposure does not produce cross-tolerance between mu-opioid and gamma-aminobutyric acidB receptor agonists in A12 dopamine neurons, suggesting that convergence upon a common effector is not a sufficient criterion for the development of cross-tolerance between receptor systems. Topics: Animals; Arcuate Nucleus of Hypothalamus; Baclofen; Drug Tolerance; Electrophysiology; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Female; GABA-B Receptor Agonists; Guinea Pigs; Hypothalamus; In Vitro Techniques; Membrane Potentials; Morphine; Morphine Dependence; Neurons; Receptors, Opioid, mu; Tetrodotoxin; Tyrosine 3-Monooxygenase | 1997 |