tetrodotoxin has been researched along with Edema* in 5 studies
5 other study(ies) available for tetrodotoxin and Edema
Article | Year |
---|---|
Sodium channel Na(v)1.7 is essential for lowering heat pain threshold after burn injury.
Marked hypersensitivity to heat and mechanical (pressure) stimuli develop after a burn injury, but the neural mechanisms underlying these effects are poorly understood. In this study, we establish a new mouse model of focal second-degree burn injury to investigate the molecular and cellular basis for burn injury-induced pain. This model features robust injury-induced behavioral effects and tissue-specific altered cytokine profile, but absence of glial activation in spinal dorsal horn. Three voltage-gated sodium channels, Na(v)1.7, Na(v)1.8, and Na(v)1.9, are preferentially expressed in peripheral somatosensory neurons of the dorsal root ganglia (DRGs) and have been implicated in injury-induced neuronal hyperexcitability. Using knock-out mice, we provide evidence that Na(v)1.7 selectively contributes to burn-induced hypersensitivity to heat, but not mechanical, stimuli. After burn model injury, wild-type mice display increased sensitivity to heat stimuli, and a normally non-noxious warm stimulus induces activity-dependent Fos expression in spinal dorsal horn neurons. Strikingly, both effects are absent in Na(v)1.7 conditional knock-out (cKO) mice. Furthermore, burn injury increases density and shifts activation of tetrodotoxin-sensitive currents in a hyperpolarized direction, both pro-excitatory properties, in DRG neurons from wild-type but not Na(v)1.7 cKO mice. We propose that, in sensory neurons damaged by burn injury to the hindpaw, Na(v)1.7 currents contribute to the hyperexcitability of sensory neurons, their communication with postsynaptic spinal pain pathways, and behavioral thresholds to heat stimuli. Our results offer insights into the molecular and cellular mechanisms of modality-specific pain signaling, and suggest Na(v)1.7-blocking drugs may be effective in burn patients. Topics: Activating Transcription Factor 3; Analysis of Variance; Animals; Biophysics; Burns; Calcitonin Gene-Related Peptide; Calcium; Cells, Cultured; Cytokines; Disease Models, Animal; Edema; Electric Stimulation; Functional Laterality; Ganglia, Spinal; Glycoproteins; Hot Temperature; Hyperalgesia; Membrane Potentials; Mice; Mice, Inbred C57BL; Mice, Transgenic; NAV1.7 Voltage-Gated Sodium Channel; NAV1.8 Voltage-Gated Sodium Channel; NAV1.9 Voltage-Gated Sodium Channel; Neuralgia; Neuroglia; Pain Threshold; Patch-Clamp Techniques; Proteins; RNA, Messenger; RNA, Untranslated; Sensory Receptor Cells; Sodium Channel Blockers; Sodium Channels; Tetrodotoxin; Transfection | 2012 |
Effects of a bupivacaine nerve block on the axonal transport of Tumor Necrosis Factor-alpha (TNF-alpha) in a rat model of carrageenan-induced inflammation.
Many pro-inflammatory cytokines are involved in the process of inflammatory pain. Bi directional axonal transport of Tumor Necrosis Factor-alpha (TNF-alpha) occurs in case of neuropathic pain induced by nerve ligation. We used an in vivo preparation with injection of carrageenan and fluorescent TNF-alpha in the territory of the saphenous nerve of rats to study this transport. We have shown that retrograde transport of TNF-alpha occurs after an inflammatory insult caused by the injection of carrageenan. This transport was likely mediated by the TNF receptor 1. A nerve block with bupivacaine totally abolishes the expression of the receptor in the dorsal root ganglion and the retrograde transport of TNF-alpha. In addition, bupivacaine at low concentrations (1-10 microM) was able to stop the axonal transport ex vivo. Tetrodotoxin was less efficacious for inhibiting the TNF-alpha transport and the rise in receptor expression and for inhibiting the axonal transport ex vivo. This may partly explain the efficacy of nerve blocks with bupivacaine to decrease the neurogenic inflammation and in a lower extent the long-term inhibition of hyperalgesic phenomenon observed in animals and in humans. Topics: Anesthetics, Local; Animals; Axonal Transport; Bupivacaine; Carrageenan; Disease Models, Animal; Edema; Femoral Nerve; Fluorescence; Foot; Ganglia, Spinal; Injections, Subcutaneous; Male; Nerve Block; Neurogenic Inflammation; Polymerase Chain Reaction; Polysaccharides; Rats; Rats, Sprague-Dawley; Receptors, Tumor Necrosis Factor, Type I; Tetrodotoxin; Tumor Necrosis Factor-alpha | 2010 |
Effects of bupivacaine and tetrodotoxin on carrageenan-induced hind paw inflammation in rats (Part 1): hyperalgesia, edema, and systemic cytokines.
Local anesthetics exert antiinflammatory actions. To elucidate potential mechanisms, the authors examined effects of bupivacaine or tetrodotoxin, administered to rats by ipsilateral or contralateral sciatic blockade or systemically, on carrageenan-induced hind paw hyperalgesia, edema, and stimulated cytokine production in circulating blood cells.. Twelve groups of rats (n = 9-12) received injections in three sites: (1) right or left hind paw (carrageenan or saline), (2) left sciatic block, and (3) systemically (subcutaneously in the upper back). Sciatic and systemic injections were performed with epinephrine plus bupivacaine, tetrodotoxin, or saline; injections were repeated 6 h later. Fifteen hours later, hyperalgesia and/or sensory and motor block were assessed behaviorally, and paw edema was quantified by magnetic resonance imaging. Stimulated production of tumor necrosis factor alpha, interleukin 10, and interleukin 1beta in whole blood cultures was measured by enzyme-linked immunosorbent assay.. Either ipsilateral or contralateral sciatic blocks using either bupivacaine or tetrodotoxin reduced carrageenan-induced edema and hyperalgesia. Systemic bupivacaine and tetrodotoxin were ineffective in preventing edema and hyperalgesia. Bupivacaine was effective in suppressing systemic tumor necrosis factor alpha and interleukin 1beta by all three routes, whereas tetrodotoxin was ineffective by all three routes.. Bupivacaine and tetrodotoxin, via a contralateral or ipsilateral sciatic block, attenuate local inflammatory edema and hyperalgesia induced by hind paw injection of carrageenan in rats. Mechanisms underlying contralateral effects of sciatic blockade remain unexplained. Bupivacaine inhibits carrageenan-evoked systemic cytokine production by a mechanism not shared by tetrodotoxin; this action may involve tetrodotoxin-resistant sodium channels or a variety of non-sodium-channel targets. Topics: Animals; Bupivacaine; Carrageenan; Drug Therapy, Combination; Edema; Hindlimb; Inflammation; Male; Rats; Rats, Sprague-Dawley; Tetrodotoxin | 2006 |
Effects of bupivacaine and tetrodotoxin on carrageenan-induced hind paw inflammation in rats (Part 2): cytokines and p38 mitogen-activated protein kinases in dorsal root ganglia and spinal cord.
The authors previously showed that bupivacaine and tetrodotoxin via contralateral or ipsilateral sciatic block, but not systemically, attenuate local edema and hyperalgesia induced by carrageenan hind paw injection in rats. Bupivacaine, by all three routes, suppressed systemic cytokine activation, whereas tetrodotoxin was ineffective by all three routes. In the current study, the authors examined cytokine and p38 mitogen-activated protein kinase (MAPK) activation in lumbar dorsal root ganglia (DRGs) and spinal cord after carrageenan paw injections and sciatic blocks with either bupivacaine or tetrodotoxin.. Ten groups of rats (n = 3-5) received injections in the following sites: right or left hind paw or right forepaw (carrageenan or saline) and left sciatic block (with epinephrine plus bupivacaine, tetrodotoxin, or saline; repeated 6 h later). Fifteen hours later, tumor necrosis factor alpha, interleukin 1beta, p38 MAPK, and phosphorylated p38 MAPK were measured by enzyme-linked immunosorbent assay in DRGs and in the spinal cord.. Carrageenan-induced hind paw inflammation enhanced tumor necrosis factor-alpha and interleukin-1beta production in bilateral DRGs and spinal cord and enhanced p38 MAPK activation in bilateral DRGs. These pathways were not activated after forepaw injection of carrageenan, suggesting a segmental mechanism. Neither bupivacaine nor tetrodotoxin inhibited cytokine and p38 MAPK activation after carrageenan injection.. Ipsilateral or contralateral sciatic blockade using either bupivacaine or tetrodotoxin does not inhibit carrageenan-induced activation of cytokines and p-38 MAPK in spinal cord and DRGs. Possible explanations may include incomplete degrees of conduction blockade or afferent signaling via saphenous nerves. Topics: Animals; Bupivacaine; Carrageenan; Cytokines; Drug Therapy, Combination; Edema; Ganglia, Spinal; Hindlimb; Inflammation; Male; p38 Mitogen-Activated Protein Kinases; Rats; Rats, Sprague-Dawley; Spinal Cord; Tetrodotoxin | 2006 |
NMDA receptors, cellular edema, and metabolic stress.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Chickens; Dizocilpine Maleate; Edema; Electron Transport; Glycolysis; Hypoglycemia; Hypoxia; Iodoacetates; Iodoacetic Acid; Ischemia; N-Methylaspartate; Potassium Cyanide; Quinoxalines; Receptors, N-Methyl-D-Aspartate; Retina; Tetrodotoxin | 1992 |