tetrodotoxin has been researched along with Diarrhea* in 7 studies
7 other study(ies) available for tetrodotoxin and Diarrhea
Article | Year |
---|---|
Characteristics of emodin on modulating the contractility of jejunal smooth muscle.
Emodin is traditionally used as a laxative and is found to increase or decrease the contractility of intestinal smooth muscle in low doses and high doses, respectively. In this study, we propose that bidirectional regulation (BR) on the contractility of jejunal smooth muscle (CJSM) is inducible by emodin in the absence of control by the central nervous system. The results indicated that emodin-induced BR had the following characteristics. A stimulatory effect on CJSM was induced by emodin at 7 low contractile states, and an inhibitory effect was induced on CJSM at 7 high contractile states. Emodin-induced BR on myosin phosphorylation was also observed. BR was not observed in the presence of tetrodotoxin, suggesting that enteric nervous system is required for producing BR. The stimulatory effect of emodin on CJSM was abolished by atropine and diphenhydramine, respectively, suggesting that BR was correlated with cholinergic and histamine system while jejunal smooth muscle was at low contractile state. The inhibitory effect of emodin on CJSM was abolished by phentolamine, propranolol, and L-NG-nitroarginine (L-NNA), respectively, suggesting that BR was related to adrenergic hyperactivity and with a nitric oxide relaxing mechanism while jejunal smooth muscle was in a high contractile state. The exact mechanism, however, needs further investigation. Topics: Animals; Atropine; Constipation; Diarrhea; Diphenhydramine; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Emodin; Enteric Nervous System; In Vitro Techniques; Jejunum; Laxatives; Muscle Contraction; Muscle, Smooth; Myosins; Nitroarginine; Phentolamine; Phosphorylation; Propranolol; Rats; Rats, Sprague-Dawley; Tetrodotoxin | 2012 |
Role of the enteric nervous system in the fluid and electrolyte secretion of rotavirus diarrhea.
The mechanism underlying the intestinal fluid loss in rotavirus diarrhea, which often afflicts children in developing countries, is not known. One hypothesis is that the rotavirus evokes intestinal fluid and electrolyte secretion by activation of the nervous system in the intestinal wall, the enteric nervous system (ENS). Four different drugs that inhibit ENS functions were used to obtain experimental evidence for this hypothesis in mice in vitro and in vivo. The involvement of the ENS in rotavirus diarrhea indicates potential sites of action for drugs in the treatment of the disease. Topics: Animals; Animals, Newborn; Body Water; Diarrhea; Electrolytes; Enteric Nervous System; Hexamethonium; In Vitro Techniques; Intestinal Mucosa; Intestine, Small; Lidocaine; Mecamylamine; Mice; Mice, Inbred BALB C; Nicotinic Antagonists; Patch-Clamp Techniques; Rotavirus Infections; Synaptic Transmission; Tetrodotoxin; Theophylline | 2000 |
Inhibition of enterotoxin-induced porcine colonic secretion by diarylsulfonylureas in vitro.
Muscle-stripped piglet colon was used to evaluate changes in short-circuit current (I(sc)) as an indicator of anion secretion. Mucosal exposure to Escherichia coli heat-stable (STa) or heat-labile enterotoxins (LT) stimulated I(sc) by 32 +/- 5 and 42 +/- 7 microA/cm(2), respectively. Enterotoxin-stimulated I(sc) was not significantly affected by either 4,4'-diaminostilbene-2, 2'-disulfonic acid or CdCl(2), inhibitors of Ca(2+)-activated Cl(-) channels and ClC-2 channels, respectively. Alternatively, N-(4-methylphenylsulfonyl)-N'-(4-trifluoromethylphenyl)urea (DASU-02), a compound that inhibits cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl(-) secretion, reduced I(sc) by 29 +/- 7 and 34 +/- 11 microA/cm(2), respectively. Two additional diarylsulfonylurea (DASU)-based compounds were evaluated for their effects on enterotoxin-stimulated secretion. The rank order of potency for inhibition by these three closely related DASU structures was identical to that observed for human CFTR. The degree of inhibition by each of these compounds was similar for both STa and LT. The structure- and concentration-dependent inhibition shown indicates that CFTR mediates both STa- and LT-stimulated colonic secretion. Similar structure-dependent inhibitory effects were observed in forskolin-stimulated rat colonic epithelium. Thus DASUs compose a family of inhibitors that may be of therapeutic value for the symptomatic treatment of diarrhea resulting from a broad spectrum of causative agents across species. Topics: Amiloride; Animals; Anions; Antineoplastic Agents; Benzofurans; Biological Transport; Bumetanide; Cadmium Chloride; Colon; Cystic Fibrosis Transmembrane Conductance Regulator; Diarrhea; Diuretics; Enterotoxins; In Vitro Techniques; Intestinal Mucosa; Phenylurea Compounds; Stilbenes; Sulfonylurea Compounds; Swine; Tetrodotoxin; Urea; Vasoactive Intestinal Peptide | 2000 |
Reactive oxygen metabolites in piglet cryptosporidiosis.
Piglet cryptosporidiosis is characterized by intestinal villous damage and malabsorption, and by reduced NaCl absorption in response to prostaglandins (PGs), which act directly on the epithelium and indirectly through enteric nerves. We hypothesized that phagocyte-derived reactive oxygen metabolite (ROM) production contributed to PG synthesis and altered transport in inflamed ileum. Ileal mucosa from control and infected piglets was analyzed for villous height, PGE2, catalase (an endogenous antioxidant), and malondialdehyde (MDA, a by-product of lipid peroxidation) from d 2-8 after infection. The response of control ileal mucosa to exogenous ROM and infected mucosa to antioxidant treatment was also studied in tissues mounted in Ussing chambers. Increased levels of MDA on d 2 preceded increased PGE2 on d 3-4, which correlated with the acute diarrheal phase; however the most severe villous atrophy (d 8) correlated with the highest levels of catalase and MDA but low levels of PGE2. Control mucosa responded to H2O2 with indomethacin- and tetrodotoxin-sensitive transient increases in short circuit current (Isc), which were accompanied by increased tissue production of 6-keto-PGF1a, the stable metabolite of PGI2; however, no increased PGE2 production was detectable. A stable analog of PGI2, carbacyclin, mimicked the transient Isc response to H2O2; however, several antioxidants failed to alter the abnormal Isc of infected tissue. These results suggest that there is evidence of increased ROM production in cryptosporidial infection and that intestinal PG synthesis and inhibited NaCl absorption may be mediated partially by ROM in this model. Additional, cooperative factors, such as PGE2 production, however, are likely needed to induce the alterations in ion transport seen in this infection. Topics: Animals; Animals, Newborn; Biological Transport; Catalase; Cryptosporidiosis; Diarrhea; Electrolytes; Ileum; Indomethacin; Lipid Peroxidation; Malondialdehyde; Prostaglandins; Reactive Oxygen Species; Swine; Tetrodotoxin | 1997 |
Tumor necrosis factor-alpha induces Cl- and K+ secretion in human distal colon driven by prostaglandin E2.
Increased levels of tumor necrosis factor-alpha (TNF-alpha) have been found in, for example, inflammatory bowel disease (IBD) and human immunodeficiency virus (HIV) infection. To investigate a possible contribution of TNF-alpha to the pathogenesis of diarrhea in these diseases, ion transport of human distal colon was studied in the Ussing chamber in vitro. Serosal addition of TNF-alpha increased short-circuit current (Isc) of partially stripped tissues in a dose-dependent manner. Maximum Isc increase of 1.8 +/- 0.2 mumol.h-1.cm-2 was reached after 60 +/- 9 min at 200 ng/ml TNF-alpha. Bidirectional tracer flux measurements revealed that TNF-alpha induced an increase in 36 Cl serosal-to-mucosal flux, a decrease in 36Cl- mucosal-to-serosal flux, and a slight increase in K+ secretion indicated by an increased secretory 86Rb net flux. In the highly differentiated colonic epithelial cell line HT-29/B6, TNF-alpha had no effect on Isc, suggesting a mediation step located in the subepithelium. This supposition was supported by measurements on totally stripped human tissues, since removal of subepithelial layers by total stripping reduced the TNF-alpha effect by 40%. Experiments with tetrodotoxin (10(-6)M) indicated that the TNF-alpha effect was not mediated by the enteric nervous system. The specific 5-lipoxygenase blocker ICI-230487 (5 x 10(-8)M) also had no effect on TNF-alpha action. In contrast, inhibition of cyclooxygenase by indomethacin (10(-6)M inhibited the effect of TNF-alpha. Radioimmunoassay of prostaglandin E2 (PGE2) in the serosal bathing solution revealed an increase in PGE2 production/release after addition of TNF-alpha, which paralleled the Isc response. We conclude that TNF-alpha changed Cl- and K+ transport toward secretion in human colon. This effect was mediated by PGE2 produced by subepithelial cells. Thus TNF-alpha could be a mediator of diarrhea during intestinal inflammation, e.g., in IBD and HIV infection. Topics: Biological Transport; Cell Line; Chlorides; Colon; Cyclooxygenase Inhibitors; Diarrhea; Dinoprostone; Eicosanoids; Humans; Indomethacin; Intestinal Mucosa; Potassium; Rubidium; Sodium; Tetrodotoxin; Tumor Necrosis Factor-alpha | 1996 |
Mast cells and histamine contribute to bile acid-stimulated secretion in the mouse colon.
Certain dihydroxy bile acids cause secretory diarrhea when present in the colonic lumen at inappropriately high concentrations. However, the mechanism underlying the secretagogue activity has not been fully elucidated. Experiments were performed to test whether mast cells and one of their major mediators, histamine, might contribute to the secretory effect. Chenodeoxycholic acid, a secretory bile acid, and ursodeoxycholic acid, a nonsecretory, hydrophilic bile acid, were compared for their ability to induce chloride secretion across segments of mouse colon mounted in Ussing chambers. Chenodeoxycholic acid, but not ursodeoxycholic acid, induced dose-dependent, biphasic chloride secretion that was greater after serosal than mucosal addition and was greater in distal versus proximal colonic segments. The secretory effect of chenodeoxycholic acid was inhibited by H1 histamine receptor antagonists and modified by the cyclooxygenase inhibitor indomethacin. However, it was unaffected by an H2 histamine receptor antagonist or by atropine. Secretory effects of chenodeoxycholic acid were diminished in magnitude and delayed in colonic tissues from mice with a genetic deficiency of tissue mast cells. Concentrations of chenodeoxycholic acid inducing secretion also released histamine from tissue segments. These data indicate that mast cells and histamine-mediated processes contribute significantly to the secretory effects of dihydroxy bile acids in the murine colon. Topics: Animals; Bile Acids and Salts; Biological Transport; Chenodeoxycholic Acid; Chlorides; Colon; Diarrhea; Histamine; In Vitro Techniques; Mast Cells; Mice; Mice, Inbred C57BL; Mice, Mutant Strains; Pyrilamine; Tetrodotoxin; Ursodeoxycholic Acid; Water-Electrolyte Balance | 1995 |
Diarrhoea of famine and malnutrition--investigations using a rat model. 2--Ileal hypersecretion induced by starvation.
The effects of progressive starvation for up to three days on the basal and secretagogue stimulated secretory functions of the rat ileum were investigated in vitro and in vivo. The secretagogues used included agents acting via cyclic AMP (dibutyryl cyclic AMP, theophylline, forskolin, and PGE2) and those acting via Ca++ (acetylcholine, bethanecol, carbachol, 5-hydroxytryptamine, and A23187). Starving rats for 24 h (day 1) had no effect on the basal electrogenic secretion (measured as the short circuit current, Isc muamps/cm2) or on the stimulated maximum electrogenic secretion (measured as the delta Isc where delta Isc = maxIsc-basal Isc). By day 2 of starvation, however, both the basal Isc and the delta Isc induced by all the secretagogues were significantly greater than in the fed and increased even more on day 3. Replacement of all the chloride ions and inhibition by furosemide indicated that the enhanced secretion was due mainly to chloride ions. Cholinergic stimulation was blocked by atropine, indicating the stimulation was via muscarinic receptors while cholinergic dose - delta Isc response curves for fed and starved ilea showed significantly increased maximum electrogenic secretory response in the latter but no evidence of any change in the affinity (ED50) of the receptors mediating the response. The basal secretion and the secretory response to acetylcholine in both fed and starved ilea was unaffected by tetrodotoxin, revealing that the enhanced secretory response could be expressed via the muscarinic receptors on the enterocytes without the enteric neural network. Measurement of ileal fluid movement in vivo showed that in fed and day 1 starved rats the basal, unstimulated 'tone' of the ileum was absorptive. On day 2, however, the basal 'tone' had reversed to one of secretion which increased further on day 3. Stimulation of fluid secretion in vivo by bethanecol, carbachol, or PGE2 induced larger increases in the starved ilea by day 2 which increased even further on day 3. Lumenal chloride and bicarbonate concentrations were greater in the starved ileal fluid than in the fed. The studies in rat ileum confirm and extend those on rat jejunum and indicate that starvation creates a hypersensitive small bowel that responds to secretagogues and cholinergic neurotransmitters with a greatly enhanced secretory response. Topics: Acetylcholine; Animals; Atropine; Bethanechol Compounds; Bicarbonates; Chlorides; Diarrhea; Disease Models, Animal; Glucose; Ileum; Male; Rats; Starvation; Tetrodotoxin; Theophylline | 1990 |