tetrodotoxin has been researched along with Adenoma* in 5 studies
5 other study(ies) available for tetrodotoxin and Adenoma
Article | Year |
---|---|
Activation of Na+ channels in GH3 cells and human pituitary adenoma cells by PACAP.
The effects of pituitary adenylate cyclase activating polypeptide (PACAP) on ion channels were examined in GH3 cells human pituitary adenoma cells. In GH3 cells, PACAP-38 (10-9 M) reversibly activated tetrodotoxin-sensitive NA+ channels but had little effect on nicardipine-sensitive Ca2+ channels. PACAP-induced increase in Na+ currents was inhibited by PACAP (6-38), a specific PACAP receptor antagonist, and Rp-cAMPs, an inhibitor for protein kinase A, and mimicked by 8-bromo-cAMP. In human pituitary adenoma cells, PACAP also activated tetrodotoxin-sensitive Na+ channels and growth hormone secretion. These results suggest the possibility that PACAP can activate voltage-gated Na+ channels via adenylate cyclase-protein kinase A pathway in the pituitary. Topics: 8-Bromo Cyclic Adenosine Monophosphate; Adenoma; Cell Line; Human Growth Hormone; Humans; Middle Aged; Neuropeptides; Pituitary Adenylate Cyclase-Activating Polypeptide; Pituitary Gland; Sodium Channels; Tetrodotoxin; Tumor Cells, Cultured | 1997 |
Human growth hormone releasing factor (hGRF) modulates calcium currents in human growth hormone secreting adenoma cells.
Electrophysiology of human growth hormone secreting tumour cells and its modification by hGRF has been studied using on-cell and Nystatin-perforated whole-cell recording configurations. Local application of hGRF (10 nM) produced an increase in the frequency of action potentials. Ca2+ currents were isolated by a ramp depolarizing pulse from -120 mV to +60 mV in the presence of tetrodotoxin (1 microM). Human GRF increased the Ca2+ currents which could be blocked by Ni+ (300 microM). We conclude that an increase in Ca2+ current is integral to the action of hGRF on these cells. Topics: Action Potentials; Adenoma; Calcium Channels; Growth Hormone; Growth Hormone-Releasing Hormone; Humans; Membrane Potentials; Pituitary Neoplasms; Sodium Channels; Tetrodotoxin; Tumor Cells, Cultured | 1993 |
Lidocaine inhibits prolactin secretion in GH4C1 cells by blocking calcium influx.
The mechanism of the inhibitory effect of local anesthetics on hormone secretion was studied in the GH4C1 line of rat pituitary tumor-derived cells. Lidocaine between 0.1 and 5 mM exerted significant dose-dependent inhibition on the increment in cytosol Ca2+ concentration ([Ca2+]i) and prolactin (PRL) secretion induced by 30 mM K+. For both effects the IC50 was 0.25 mM and maximal inhibition occurred at 5 mM. A normal response returned within 20 min after removal of lidocaine from the incubation medium. 1 microM tetrodotoxin had no effect on the 30 mM K+ induced [Ca2+]i transient or PRL secretion, indicating that Na+ channels are not involved in the inhibitory effect of lidocaine. Lidocaine similarly inhibited the [Ca2+]i increment and PRL secretion induced by 30% medium hyposmolarity and 1 microM Bay K 8644. Lidocaine was much less effective in inhibiting secretion induced by 1 microM phorbol 12-myristate 13-acetate (TPA) or 5 microM forskolin. 5 mM procaine produced effects similar to those of lidocaine. Our data suggest that in GH4C1 cells local anesthetics depress secretagogue-induced PRL secretion primarily by blocking Ca2+ influx, probably through L-type Ca2+ channels. Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Adenoma; Animals; Calcium; Colforsin; Lidocaine; Pituitary Neoplasms; Potassium; Procaine; Prolactin; Rats; Tetradecanoylphorbol Acetate; Tetrodotoxin; Tumor Cells, Cultured | 1992 |
Spontaneous and corticotropin-releasing factor-induced cytosolic calcium transients in corticotrophs.
Spontaneous and CRF-stimulated changes in the cytosolic free calcium concentration ([Ca2+]i) were studied in two types of corticotrophs: 1) cultured human ACTH-secreting pituitary adenoma cells (hACTH cells), and 2) identified small ovoid corticotrophs cultured from normal rat pituitaries. [Ca2+]i was monitored in individual corticotrophs by dual emission microspectrofluorimetry using indo-1 as the intracellular fluorescent Ca2+ probe. In hACTH cells, [Ca2+]i measurements were carried out in combination with electrophysiological recordings obtained using whole cell patch-clamp techniques. It was shown that a single spontaneous Ca(2+)-dependent action potential led to a marked transient increase in [Ca2+]i in human tumoral corticotrophs. Spontaneous fluctuations in [Ca2+]i were also observed in unpatched corticotrophs whether derived from human pituitary tumors or normal rat tissue. Based on their striking kinetic features and their sensitivity to external Ca2+, we suggest that these spontaneous [Ca2+]i transients were the consequence of action potential firing. Under separate voltage-clamp (patch-clamp) conditions, tumor corticotrophs showed two Ca2+ current components: a low threshold, rapidly inactivating (T-type) current, and a higher threshold, slowly inactivating (L-type) current. The dihydropyridine Ca2+ channel blocker PN 200-110 (100 nM) abolished the L-type current without affecting the T-type current, while the inorganic Ca2+ channel blocker Cd2+ (200 microM) suppressed both Ca2+ currents. The Na+ channel blocker tetrodotoxin (5 microM) did not affect inward currents in tumor corticotrophs. Both L- and T-type voltage-gated Ca2+ channels were involved in controlling [Ca2+]i transients in both tumor and normal corticotrophs, inasmuch as Cd2+ (200 microM) abolished [Ca2+]i) transients, while PN 200-110 (100 nM) greatly diminished, but did not completely abolish, [Ca2+]i transients. The latter did not appear to depend on a voltage-dependent Na+ influx, since they were unaffected by tetrodotoxin (5 microM). Corticotrophs generate [Ca2+]i transients in response to the hypothalamic secretagogue CRF by acting on their membrane excitability. Indeed, we demonstrated in combined fluorescent and electrophysiological experiments that CRF (100 nM) had a coordinate action on human tumoral corticotrophs comprised of a modest depolarization and an increase in the frequency of both action potentials and subsequent [Ca2+]i transients. A coincident increase in the Topics: Action Potentials; Adenoma; Adrenocorticotropic Hormone; Animals; Calcium; Calcium Channel Blockers; Calcium Channels; Corticotropin-Releasing Hormone; Cytosol; Egtazic Acid; Female; Humans; Isradipine; Membrane Potentials; Oxadiazoles; Pituitary Gland; Pituitary Neoplasms; Rats; Rats, Inbred Strains; Spectrometry, Fluorescence; Tetrodotoxin; Tumor Cells, Cultured | 1991 |
Sodium and calcium action potentials in human anterior pituitary cells.
Human anterior pituitary cells derived from a somatotropin-secreting adenoma were capable of generating action potentials with Ca2+ and tetrodotoxin-sensitive Na+ components. A major fraction of the action current was carried by Na ions. Topics: Action Potentials; Adenoma; Calcium; Cells, Cultured; Female; Humans; Middle Aged; Pituitary Gland, Anterior; Sodium; Tetrodotoxin | 1980 |