tetrahydrouridine has been researched along with Colorectal-Neoplasms* in 2 studies
2 other study(ies) available for tetrahydrouridine and Colorectal-Neoplasms
Article | Year |
---|---|
Combined inhibition of histone deacetylase and cytidine deaminase improves epigenetic potency of decitabine in colorectal adenocarcinomas.
Targeting the epigenome of cancerous diseases represents an innovative approach, and the DNA methylation inhibitor decitabine is recommended for the treatment of hematological malignancies. Although epigenetic alterations are also common to solid tumors, the therapeutic efficacy of decitabine in colorectal adenocarcinomas (COAD) is unfavorable. Current research focuses on an identification of combination therapies either with chemotherapeutics or checkpoint inhibitors in modulating the tumor microenvironment. Here we report a series of molecular investigations to evaluate potency of decitabine, the histone deacetylase inhibitor PBA and the cytidine deaminase (CDA) inhibitor tetrahydrouridine (THU) in patient derived functional and p53 null colon cancer cell lines (CCCL). We focused on the inhibition of cell proliferation, the recovery of tumor suppressors and programmed cell death, and established clinical relevance by evaluating drug responsive genes among 270 COAD patients. Furthermore, we evaluated treatment responses based on CpG island density.. Decitabine caused marked repression of the DNMT1 protein. Conversely, PBA treatment of CCCL recovered acetylation of histone 3 lysine residues, and this enabled an open chromatin state. Unlike single decitabine treatment, the combined decitabine/PBA treatment caused > 95% inhibition of cell proliferation, prevented cell cycle progression especially in the S and G2-phase and induced programmed cell death. Decitabine and PBA differed in their ability to facilitate re-expression of genes localized on different chromosomes, and the combined decitabine/PBA treatment was most effective in the re-expression of 40 tumor suppressors and 13 genes typically silenced in cancer-associated genomic regions of COAD patients. Furthermore, this treatment repressed expression of 11 survival (anti-apoptotic) genes and augmented expression of X-chromosome inactivated genes, especially the lncRNA Xist to facilitate p53-mediated apoptosis. Pharmacological inhibition of CDA by THU or its gene knockdown prevented decitabine inactivation. Strikingly, PBA treatment recovered the expression of the decitabine drug-uptake transporter SLC15A1, thus enabling high tumor drug-loads. Finally, for 26 drug responsive genes we demonstrated improved survival in COAD patients.. The combined decitabine/PBA/THU drug treatment improved drug potency considerably, and given their existing regulatory approval, our findings merit prospective clinical trials for the triple combination in COAD patients. Topics: Adenocarcinoma; Azacitidine; Cell Line, Tumor; Colorectal Neoplasms; Cytidine Deaminase; Decitabine; DNA Methylation; Epigenesis, Genetic; Histone Deacetylase Inhibitors; Histone Deacetylases; Humans; Prospective Studies; Tetrahydrouridine; Tumor Microenvironment; Tumor Suppressor Protein p53 | 2023 |
Optimized blood sampling with cytidine deaminase inhibitor for improved analysis of capecitabine metabolites.
The 5FU prodrug capecitabine undergoes a 3-step enzymatic conversion, including the conversion of 5'DFRC into 5'DFUR by cytidine deaminase (CDA). The presence of CDA activity in blood led us to analyze the possible ex vivo conversion of 5'DFCR into 5'DFUR in blood samples. We thus examined the impact of the addition of a CDA inhibitor (tetrahydrouridine (THU) 1 microM final) in blood. Blood samples from 3 healthy volunteers were taken on tubes containing or not THU. Blood was spiked with 5'DFCR (20 microM final) (T0) and was maintained at room temperature for 2 h. Plasma concentrations of 5'DFRC and 5'DFUR were analyzed with an optimized HPLC assay. In the absence of THU, 5'DFUR was detectable as early as T0. The percent of 5'DFUR produced relative to 5'DFCR increased over time, up to 7.7 % at 2h. In contrast, the presence of THU totally prevents the formation of 5'DFUR. The impact of THU for preventing the conversion of 5'DFCR was confirmed by the analysis of blood samples from 2 capecitabine-treated patients. Addition of THU in the sampling-tube before the introduction of blood is thus strongly recommended in order to guarantee accurate conditions for reliable measurement of capecitabine metabolites in plasma, and thus faithful pharmacokinetic data. Topics: Capecitabine; Chromatography, High Pressure Liquid; Colorectal Neoplasms; Cytidine Deaminase; Deoxycytidine; Enzyme Inhibitors; Fluorouracil; Humans; Metabolic Networks and Pathways; Prodrugs; Tetrahydrouridine | 2008 |