tetragastrin and Pain

tetragastrin has been researched along with Pain* in 4 studies

Trials

1 trial(s) available for tetragastrin and Pain

ArticleYear
Blockade of the mineralocorticoid receptor in healthy men: effects on experimentally induced panic symptoms, stress hormones, and cognition.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2007, Volume: 32, Issue:1

    Animal studies have shown that blockade of central mineralocorticoid receptors (MR) has anxiolytic effects and impairs several aspects of cognitive function. No study to date assessed the effects of MR blockade on anxiety and cognitive function in humans. In the present study, 16 healthy young men were treated either with placebo or with 300 mg spironolactone, a MR-antagonist, at 1100, 1330, and 1630 hours in a balanced cross-over design with the two study conditions being 1 week apart. At 1500 hours, the panic symptoms provoking compound cholecystokinin-tetrapeptide (CCK-4) was administered i.v. on both occasions and panic symptoms were assessed. We measured plasma ACTH and cortisol between 1300 and 1900 hours and assessed cognitive function between 1800 and 1900 hours. CCK-4 elicited panic symptoms and increased ACTH and cortisol secretion in both conditions. Intensity of panic symptoms after CCK-4 was not different between spironolactone and placebo. Spironolactone significantly impaired selective attention and delayed recall of visuospatial memory, and diminished set shifting/mental flexibility on a trend level. Pretreatment with spironolactone led to higher baseline cortisol levels compared to placebo whereas no differences in stimulated cortisol, baseline ACTH, and stimulated ACTH emerged. Blockade of MR with spironolactone increases baseline cortisol secretion and impairs cognitive function but has no effect on experimentally induced panic symptoms in humans, for the study design and dosage of spironolactone used. The domains of cognitive function that are impaired after blockade of MR in men, that is, selective attention, visuospatial memory, and mental flexibility/set shifting appear to be remarkably similar to those described in animal studies.

    Topics: Adrenocorticotropic Hormone; Adult; Analysis of Variance; Blood Pressure; Cognition; Cross-Over Studies; Double-Blind Method; Heart Rate; Humans; Hydrocortisone; Male; Mineralocorticoid Receptor Antagonists; Neuropsychological Tests; Pain; Pain Measurement; Radioimmunoassay; Receptors, Mineralocorticoid; Spironolactone; Tetragastrin; Verbal Learning

2007

Other Studies

3 other study(ies) available for tetragastrin and Pain

ArticleYear
Acquisition of analgesic properties by the cholecystokinin (CCK)/CCK2 receptor system within the amygdala in a persistent inflammatory pain condition.
    Pain, 2019, Volume: 160, Issue:2

    Pain is associated with negative emotions such as anxiety, but the underlying neurocircuitry and modulators of the association of pain and anxiety remain unclear. The neuropeptide cholecystokinin (CCK) has both pronociceptive and anxiogenic properties, so we explored the role of CCK in anxiety and nociception in the central amygdala (CeA), a key area in control of emotions and descending pain pathways. Local infusion of CCK into the CeA of control rats increased anxiety, as measured in the light-dark box test, but had no effect on mechanical sensitivity. By contrast, intra-CeA CCK infusion 4 days after Complete Freund's Adjuvant (CFA) injection into the hindpaw resulted in analgesia, but also in loss of its anxiogenic capacity. Inflammatory conditions induced changes in the CeA CCK signaling system with an increase of CCK immunoreactivity and a decrease in CCK1, but not CCK2, receptor mRNA. In CFA rats, patch-clamp experiments revealed that CCK infusion increased CeA neuron excitability. It also partially blocked the discharge of wide dynamic range neurons in the dorsal spinal cord. These effects of CCK on CeA and spinal neurons in CFA rats were mimicked by the specific CCK2 receptor agonist, gastrin. This analgesic effect was likely mediated by identified CeA neurons projecting to the periaqueductal gray matter that express CCK receptors. Together, our data demonstrate that intra-CeA CCK infusion activated a descending CCK2 receptor-dependent pathway that inhibited spinal neuron discharge. Thus, persistent pain induces a functional switch to a newly identified analgesic capacity of CCK in the amygdala, indicating central emotion-related circuit controls pain transmission in spinal cord.

    Topics: Amygdala; Animals; Cholecystokinin; Dark Adaptation; Disease Models, Animal; Exploratory Behavior; Freund's Adjuvant; Gastrins; Glutamate Decarboxylase; Inflammation; Male; Neurons; Nociception; Pain; Pain Threshold; Periaqueductal Gray; Rats; Rats, Sprague-Dawley; Receptor, Cholecystokinin B; Signal Transduction; Sincalide; Tetragastrin

2019
Antinociceptive action of cholecystokinin octapeptide (CCK 8) and related peptides in rats and mice: effects of naloxone and peptidase inhibitors.
    Neuropharmacology, 1987, Volume: 26, Issue:4

    Cholecystokinin octapeptide (CCK 8) produced significant antinociception in the tail immersion test in the rat, paw pressure test in the rat and acetylcholine-induced writhing test in the mouse after subcutaneous (s.c.) administration. In the hot plate test, CCK 8 (s.c.) showed antinociceptive activity if the latency to lick was used as the end point but if the latency to jump was recorded the antinociceptive effects were not evident. Cholecystokinin tetrapeptide (CCK 4) was shown to be antinociceptive in the writhing but not in the hot plate test after subcutaneous administration and appeared to be less potent than CCK 8 when tested under the same conditions. Antinociception induced by CCK 8 in the hot plate test (lick) could also be demonstrated after direct intracerebroventricular (i.c.v.) injection and this observation was also made with the CCK-related peptide FMRF amide. Antinociception induced by CCK 8 (which did not appear to be associated with reduced locomotor activity) was evident 5 min after intraventricular injection and was maximal at 10 min, the effect lasting over a 30-45 min period. The antinociceptive effect of CCK 8 was antagonised by naloxone and was potentiated by simultaneous administration of the peptidase inhibitors bestatin, thiorphan and captopril.

    Topics: Animals; Captopril; FMRFamide; Gastrins; Leucine; Male; Mice; Naloxone; Neuropeptides; Pain; Protease Inhibitors; Rats; Rats, Inbred Strains; Reaction Time; Sincalide; Tetragastrin; Thiorphan; Tiopronin

1987
Antinociceptive profile of sulfated CCK-8. Comparison with CCK-4, unsulfated CCK-8 and other neuropeptides.
    Neuropharmacology, 1986, Volume: 25, Issue:8

    The antinociceptive activity of sulfated cholecystokinin octapeptide (CCK-8-S) was characterized by comparison with two other endogenous forms, unsulfated CCK-8 (CCK-8-U) and the carboxyl tetrapeptide fragment (CCK-4) and two other peptides present in the gut and brain: bombesin and neurotensin. By the intracerebroventricular (i.c.v.) route, CCK-8-S was antinociceptive in the hot plate and phenylquinone-induced writhing assays, but CCK-8-U and CCK-4 were active only in the latter test. By systemic administration, CCK-8-S retained anti-writhing activity but CCK-8-U and CCK-4 did not. Therefore, CCK receptors in brain may be involved in the apparent antinociception produced by CCK-8-U and CCK-4. Bombesin produced potent antinociceptive activity, along with a distinct, head-scratching syndrome, in both the writhing and hot plate tests. Naloxone reversed bombesin-induced elevation of latencies of mouse jump but not the head-scratching syndrome, indicating that the analgesic effect in the hot plate test was independent of the scratching behaviour. Neurotensin, unlike CCK-8-S, elevated tail-flick latencies, and was more potent in the writhing than in the hot plate test. Several differences between CCK-8-S and opioid substances included the need for relatively large doses of naloxone to block the effects of CCK-8-S in the phenylquinone-induced writhing test and the lack of effect of CCK-8-S in the tail-flick test. Global sedation can account for some, but not all, of the effects of CCK-8-S.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Analgesics; Animals; Benzoquinones; Bombesin; Hot Temperature; Male; Mice; Naloxone; Neuropeptides; Neurotensin; Pain; Quinones; Sincalide; Tetragastrin

1986