tetracycline and Machado-Joseph-Disease

tetracycline has been researched along with Machado-Joseph-Disease* in 2 studies

Other Studies

2 other study(ies) available for tetracycline and Machado-Joseph-Disease

ArticleYear
Epigallocatechin-3-gallate and tetracycline differently affect ataxin-3 fibrillogenesis and reduce toxicity in spinocerebellar ataxia type 3 model.
    Human molecular genetics, 2014, Dec-15, Volume: 23, Issue:24

    The polyglutamine (polyQ)-containing protein ataxin-3 (AT3) triggers the neurodegenerative disease spinocerebellar ataxia type 3 (SCA3) when its polyQ tract is expanded beyond a critical length. This results in protein aggregation and generation of toxic oligomers and fibrils. Currently, no effective treatment is available for such and other polyQ diseases. Therefore, plenty of investigations are being carried on to assess the mechanism of action and the therapeutic potential of anti-amyloid agents. The polyphenol compound epigallocatechin-3-gallate (EGCG) and tetracycline have been shown to exert some effect in preventing fibrillogenesis of amyloidogenic proteins. Here, we have incubated an expanded AT3 variant with either compound to assess their effects on the aggregation pattern. The process was monitored by atomic force microscopy and Fourier transform infrared spectroscopy. Whereas in the absence of any treatment, AT3 gives rise to amyloid β-rich fibrils, whose hallmark is the typical glutamine side-chain hydrogen bonding, when incubated in the presence of EGCG it generated soluble, SDS-resistant aggregates, much poorer in β-sheets and devoid of any ordered side-chain hydrogen bonding. These are off-pathway species that persist until the latest incubation time and are virtually absent in the control sample. In contrast, tetracycline did not produce major alterations in the structural features of the aggregated species compared with the control, but substantially increased their solubility. Both compounds significantly reduced toxicity, as shown by the MTT assay in COS-7 cell line and in a transgenic Caenorhabditis elegans strain expressing in the nervous system an AT3 expanded variant in fusion with GFP.

    Topics: Amyloid; Animals; Ataxin-3; Caenorhabditis elegans; Caenorhabditis elegans Proteins; Catechin; Cell Survival; Chlorocebus aethiops; COS Cells; Disease Models, Animal; Gene Expression; Green Fluorescent Proteins; Humans; Hydrogen Bonding; Machado-Joseph Disease; Microscopy, Atomic Force; Nerve Tissue Proteins; Neuroprotective Agents; Protein Aggregates; Recombinant Fusion Proteins; Spectroscopy, Fourier Transform Infrared; Tetracycline

2014
Compromised mitochondrial complex II in models of Machado-Joseph disease.
    Biochimica et biophysica acta, 2012, Volume: 1822, Issue:2

    Machado-Joseph disease (MJD), also known as Spinocerebellar Ataxia type 3, is an inherited dominant autosomal neurodegenerative disorder. An expansion of Cytosine-Adenine-Guanine (CAG) repeats in the ATXN3 gene is translated as an expanded polyglutamine domain in the disease protein, ataxin-3. Selective neurodegeneration in MJD is evident in several subcortical brain regions including the cerebellum. Mitochondrial dysfunction has been proposed as a mechanism of neurodegeneration in polyglutamine disorders. In this study, we used different cell models and transgenic mice to assess the importance of mitochondria on cytotoxicity observed in MJD. Transiently transfected HEK cell lines with expanded (Q84) ataxin-3 exhibited a higher susceptibility to 3-nitropropionic acid (3-NP), an irreversible inhibitor of mitochondrial complex II. Increased susceptibility to 3-NP was also detected in stably transfected PC6-3 cells that inducibly express expanded (Q108) ataxin-3 in a tetracycline-regulated manner. Moreover, cerebellar granule cells from MJD transgenic mice were more sensitive to 3-NP inhibition than wild-type cerebellar neurons. PC6-3 (Q108) cells differentiated into a neuronal-like phenotype with nerve growth factor (NGF) exhibited a significant decrease in mitochondrial complex II activity. Mitochondria from MJD transgenic mouse model and lymphoblast cell lines derived from MJD patients also showed a trend toward reduced complex II activity. Our results suggest that mitochondrial complex II activity is moderately compromised in MJD, which may designate a common feature in polyglutamine toxicity.

    Topics: Animals; Ataxin-3; Cell Death; Cell Line; Cell Line, Transformed; Cells, Cultured; Cerebellum; Disease Models, Animal; HEK293 Cells; Humans; Machado-Joseph Disease; Mice; Mice, Transgenic; Mitochondria; Mitochondrial Membranes; Nerve Tissue Proteins; Neurons; Nitro Compounds; Nuclear Proteins; Peptides; Propionates; Repressor Proteins; Tetracycline

2012