tetracycline and Brain-Injuries--Traumatic

tetracycline has been researched along with Brain-Injuries--Traumatic* in 2 studies

Reviews

1 review(s) available for tetracycline and Brain-Injuries--Traumatic

ArticleYear
    Proceedings. Mathematical, physical, and engineering sciences, 2019, Volume: 475, Issue:2227

    Patients with POAG have lower corneal endothelial cell density than healthy controls of the same age. This may be attributed to mechanical damage from elevated IOP and toxicity of glaucoma medications.. Mycophenolic acid was detected in all cats. The dose 10 mg/kg given q12h for 1 week was tolerated (n = 3). The efficacy of MMF as an immunosuppressant and long-term safety in cats of this dosage regimen is unknown.. T

    Topics: Acetylcholine; Acinetobacter baumannii; Actinobacteria; Action Potentials; Adalimumab; Adaptation, Physiological; Adipates; Administration, Oral; Adolescent; Adrenal Glands; Adsorption; Adult; Aged; Aged, 80 and over; Aging; AIDS-Related Opportunistic Infections; Aldosterone; Amino Acids; Ammonia; Amoxicillin; AMP-Activated Protein Kinases; Animals; Antacids; Anti-Bacterial Agents; Antineoplastic Agents; Antirheumatic Agents; Apgar Score; Area Under Curve; ARNTL Transcription Factors; Arterial Pressure; Arthritis, Juvenile; Athletes; Attention; Biodegradation, Environmental; Biofilms; Biofuels; Biological Therapy; Biomass; Biomimetic Materials; Bioreactors; Birth Weight; Bismuth; Blood Flow Velocity; Bone and Bones; Brain Injuries, Traumatic; Calcium; Calcium Channels; Capsaicin; Carbon; Carcinoma, Hepatocellular; Cardiomegaly, Exercise-Induced; Cartilage; Cartilage, Articular; Case-Control Studies; Catalysis; Cats; CD4-Positive T-Lymphocytes; CD8-Positive T-Lymphocytes; Cell Death; Cell Differentiation; Cell Line, Tumor; Cell Membrane; Charcoal; Chemokine CCL2; Child; Child, Preschool; Chondrogenesis; Chronic Disease; Circadian Clocks; Circadian Rhythm Signaling Peptides and Proteins; Clarithromycin; Coccidioides; Coccidioidomycosis; Cognitive Behavioral Therapy; Coinfection; Color; Coloring Agents; Computer Simulation; Computers, Molecular; Consensus; Corticosterone; Cyclic AMP Response Element-Binding Protein; Cytochrome P-450 Enzyme System; Death, Sudden, Cardiac; Density Functional Theory; Diabetes Mellitus, Type 2; Diabetic Retinopathy; Dialysis Solutions; Disease Models, Animal; Dogs; Dopamine Agonists; Dose-Response Relationship, Drug; Doxorubicin; Drug Administration Schedule; Drug Resistance, Bacterial; Drug Therapy, Combination; Electrocardiography; Electrocardiography, Ambulatory; Electrolytes; Endocardium; Endocrine Disruptors; Endocytosis; Endoscopy, Gastrointestinal; Escherichia coli Proteins; Esters; Evolution, Molecular; Executive Function; Feasibility Studies; Female; Ferric Compounds; Fluorescence; Fluorescent Dyes; Fluorine Radioisotopes; Frailty; Free Radical Scavengers; Gabapentin; Geriatric Assessment; Glucaric Acid; Glucocorticoids; Glucose; Glucose Metabolism Disorders; Halogenated Diphenyl Ethers; Heart Rate; Heart Ventricles; HEK293 Cells; Helicobacter Infections; Helicobacter pylori; Hep G2 Cells; Hepatocytes; Humans; Hungary; Hydrogen Sulfide; Hydrogen-Ion Concentration; Immunologic Factors; Immunomodulation; Immunosuppressive Agents; Independent Living; Indocyanine Green; Infant; Infant Formula; Infant Mortality; Infant, Newborn; Infant, Newborn, Diseases; Inflorescence; Insulin Resistance; Insulins; International Agencies; Iron; Isotonic Solutions; Kidney Failure, Chronic; Kinetics; Lactones; Leukocytes, Mononuclear; Liver Neoplasms; Macular Edema; Magnetic Resonance Imaging; Magnetic Resonance Spectroscopy; Magnetosomes; Male; Medical Audit; Mesenchymal Stem Cells; Metabolic Syndrome; Metformin; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Nude; Middle Aged; Molecular Conformation; Molecular Targeted Therapy; Motor Activity; Multiple Sclerosis; Mycophenolic Acid; Netherlands; Neuropsychological Tests; Nuclear Energy; Organs at Risk; Osteoarthritis; Osteoarthritis, Hip; Oxidation-Reduction; Palladium; Pericardium; Perinatal Death; Peritoneal Dialysis; Phantoms, Imaging; Pharmaceutical Preparations; Phospholipids; Phosphorylation; Physical Conditioning, Human; Physical Endurance; Pilot Projects; Polyketides; Polymers; Positron-Emission Tomography; Postoperative Period; Potassium; Powders; Pramipexole; Predictive Value of Tests; Pregabalin; Pregnancy; Pregnancy Outcome; Protein Structure, Secondary; Proton Pump Inhibitors; Puberty; Pulmonary Circulation; Quality Assurance, Health Care; Quantum Dots; Radiometry; Radiotherapy Dosage; Radiotherapy Planning, Computer-Assisted; Radiotherapy, Intensity-Modulated; Rats, Sprague-Dawley; Receptors, CCR2; Receptors, Transferrin; Regeneration; Registries; Renal Insufficiency, Chronic; Reproducibility of Results; Research Design; Restless Legs Syndrome; Retina; Retinoid X Receptor alpha; Retrospective Studies; Rhenium; Risk Factors; RNA, Messenger; Severity of Illness Index; Sex Factors; Sodium; Sodium Fluoride; Solvents; Spectrometry, Fluorescence; Spectroscopy, Fourier Transform Infrared; Stereoisomerism; Stroke; Structure-Activity Relationship; Tachycardia, Ventricular; Tetracycline; Tetrahydrofolate Dehydrogenase; Tetrahydronaphthalenes; Thermodynamics; Thiophenes; Time Factors; Tinidazole; Tomography, Optical Coherence; Tomography, X-Ray Computed; Topiramate; Toxoplasma; Toxoplasmosis, Cerebral; Transferrin; Treatment Outcome; Up-Regulation; Upper Extremity; Uremia; Uveitis; Vascular Remodeling; Ventricular Fibrillation; Ventricular Function, Left; Ventricular Function, Right; Ventricular Remodeling; Verapamil; Veterans; Visual Acuity; Vitrectomy; Water Pollutants, Chemical; Zea mays; Zirconium

2019

Other Studies

1 other study(ies) available for tetracycline and Brain-Injuries--Traumatic

ArticleYear
Minocycline attenuates neurological impairment and regulates iron metabolism in a rat model of traumatic brain injury.
    Archives of biochemistry and biophysics, 2020, 03-30, Volume: 682

    There is currently no effective treatment for neurological impairment caused by traumatic brain injury (TBI). It has been reported that excessive iron production in the brain may be a key factor in neurological impairment. In the present study, we investigated the effects of minocycline, a semi-synthetic tetracycline antibiotic, against TBI-induced neurological impairment and explored its underlying mechanism. Neurological impairment was assessed by foot-fault test, cylinder test, wire hang test, and Morris water maze. Nissl staining was performed to evaluate cell viability in the brain. The iron concentrations in cerebrospinal fluid (CSF), serum, and brain tissues were examined. The Fe

    Topics: Animals; Anti-Bacterial Agents; Brain; Brain Injuries, Traumatic; Cation Transport Proteins; Cerebral Cortex; Chelating Agents; Disease Models, Animal; Ferritins; Hippocampus; Iron; Male; Maze Learning; Minocycline; Nervous System Diseases; Rats; Rats, Sprague-Dawley; Receptors, Transferrin; Tetracycline

2020