tetracosahexaenoic-acid and Zellweger-Syndrome

tetracosahexaenoic-acid has been researched along with Zellweger-Syndrome* in 1 studies

Other Studies

1 other study(ies) available for tetracosahexaenoic-acid and Zellweger-Syndrome

ArticleYear
Docosahexaenoic acid synthesis in human skin fibroblasts involves peroxisomal retroconversion of tetracosahexaenoic acid.
    Journal of lipid research, 1995, Volume: 36, Issue:11

    The purpose of this study was to determine whether the formation of docosahexaenoic acid in human cells occurs through a pathway that involves 24-carbon n-3 fatty acid intermediates and retroconversion. Normal human skin fibroblasts synthesized radiolabeled docosahexaenoic acid from [1-(14)C]18:3n-3, [3-(14)C]22:5n-3, [3-(14)C]24:5n-3, and [3-(14)C]24:6n-3. The amount of docosahexaenoate formed was reduced in fibroblasts defective in peroxisomal biogenesis, by 90-100% in Zellweger's syndrome and by 50-75% in infantile Refsum's disease. Fatty acid elongation and desaturation were intact in these mutant cells. No decrease in radiolabeled docosahexaenoic acid production occurred in mutant fibroblasts defective in peroxisomal alpha-oxidation or mitochondrial beta-oxidation, or in normal fibroblasts treated with methyl palmoxirate to inhibit mitochondrial beta-oxidation. Therefore, the retroconversion step in docosahexaenoic acid formation occurs through peroxisomal beta-oxidation in normal human cells. These results demonstrate that the pathway for docosahexaenoic acid synthesis in human cells involves 24-carbon intermediates. The limited ability to synthesize docosahexaenoic acid may underlie some of the pathology that occurs in genetic diseases involving peroxisomal beta-oxidation.

    Topics: alpha-Linolenic Acid; Cells, Cultured; Docosahexaenoic Acids; Fatty Acids, Omega-3; Fatty Acids, Unsaturated; Fibroblasts; Humans; Microbodies; Mutation; Oxidation-Reduction; Reference Values; Skin; Zellweger Syndrome

1995