terutroban and Arteriosclerosis

terutroban has been researched along with Arteriosclerosis* in 3 studies

Other Studies

3 other study(ies) available for terutroban and Arteriosclerosis

ArticleYear
Cyclooxygenases, thromboxane, and atherosclerosis: plaque destabilization by cyclooxygenase-2 inhibition combined with thromboxane receptor antagonism.
    Circulation, 2005, Jan-25, Volume: 111, Issue:3

    Antagonism or deletion of the receptor (the TP) for the cyclooxygenase (COX) product thromboxane (Tx)A2, retards atherogenesis in apolipoprotein E knockout (ApoE KO) mice. Although inhibition or deletion of COX-1 retards atherogenesis in ApoE and LDL receptor (LDLR) KOs, the role of COX-2 in atherogenesis remains controversial. Other products of COX-2, such as prostaglandin (PG) I2 and PGE2, may both promote inflammation and restrain the effects of TxA2. Thus, combination with a TP antagonist might reveal an antiinflammatory effect of a COX-2 inhibitor in this disease. We addressed this issue and the role of TxA2 in the promotion and regression of diffuse, established atherosclerosis in Apobec-1/LDLR double KOs (DKOs).. TP antagonism with S18886, but not combined inhibition of COX-1 and COX-2 with indomethacin or selective inhibition of COX-2 with Merck Frosst (MF) tricyclic, retards significantly atherogenesis in DKOs. Although indomethacin depressed urinary excretion of major metabolites of both TxA2, 2,3-dinor TxB2 (Tx-M), and PGI2, 2,3-dinor 6-keto PGF(1alpha) (PGI-M), only PGI-M was depressed by the COX-2 inhibitor. None of the treatments modified significantly the increase in lipid peroxidation during atherogenesis, reflected by urinary 8,12-iso-iPF(2alpha)-VI. Combination with the COX-2 inhibitor failed to augment the impact of TP antagonism alone on lesion area. Rather, analysis of plaque morphology reflected changes consistent with destabilization of the lesion coincident with augmented formation of TxA2. Despite a marked effect on disease progression, TP antagonism failed to induce regression of established atherosclerotic disease in this model.. TP antagonism is more effective than combined inhibition of COX-1 and COX-2 in retarding atherogenesis in Apobec-1/LDLR DKO mice, which perhaps reflects activation of the receptor by multiple ligands during disease initiation and early progression. Despite early intervention, selective inhibition of COX-2, alone or in combination with a TP antagonist, failed to modify disease progression but may undermine plaque stability when combined with the antagonist. TP antagonism failed to induce regression of established atherosclerotic disease. TP ligands, including COX-1 (but not COX-2)-derived TxA2, promote initiation and early progression of atherogenesis in Apobec-1/LDLR DKOs but appear unimportant in the maintenance of established disease.

    Topics: Animals; Aorta; Arteriosclerosis; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Cyclooxygenase Inhibitors; Dietary Fats; Drug Interactions; Furans; Membrane Proteins; Mice; Naphthalenes; Propionates; Prostaglandin-Endoperoxide Synthases; Receptors, Thromboxane; Thromboxane A2

2005
Atherosclerosis regression and TP receptor inhibition: effect of S18886 on plaque size and composition--a magnetic resonance imaging study.
    European heart journal, 2005, Volume: 26, Issue:15

    Endothelial dysfunction, platelet hyperactivity, and inflammation play a crucial role in atherogenesis. A growing body of evidence suggests that inhibition of the thromboxane A2 (TxA2 or TP) receptor may improve endothelial function and reduce the inflammatory component of atherosclerosis in addition to its demonstrated antiplatelet activity. Consequently, we sought to assess the effect of a novel TP receptor antagonist S18886, on atherosclerotic lesion progression and composition by serial non-invasive magnetic resonance imaging (MRI).. S18886 was compared with control in an experimental model of established aortic atherosclerosis in New Zealand White rabbits (n=10). The animals underwent MRI of the abdominal aorta at the time of randomization and at the end of treatment. Subsequently, animals were euthanized and specimens were stained for histopathology and immunohistochemistry with anti-alpha-actin antibodies for vascular smooth muscle cells (VSMC), anti-RAM-11 for macrophages, anti-caspase-3 for apoptotic cells, anti-MMP-1 for metalloproteinases, and anti-endothelin-1 (ET-1) as a marker of endothelial dysfunction. MRI analysis revealed a significant reduction in total vessel area (TVA) and vessel wall area (VWA) in the S18886 group (P<0.05). Immunostaining analysis showed a significant decrease in RAM-11, caspase-3, MMP-1, ET-1 and an increase in alpha-actin in the treated group (P<0.05 vs. control).. Inhibition of the TP receptor by S18886 causes a regression of advanced atherosclerotic plaques. In addition, the reduction in the markers for macrophages, apoptotic cells, metalloproteinases, and endothelin-1 and the increase in VSMC, suggests that S18886 may not only halt the progression of atherosclerosis, but also transform lesions towards a more stable phenotype. The possibility of combining antithrombotic and antiatherosclerotic activity by means of the administration of TP inhibitors deserves further investigation in a clinical setting.

    Topics: Animals; Arteriosclerosis; Immunohistochemistry; Magnetic Resonance Angiography; Male; Naphthalenes; Propionates; Rabbits; Random Allocation; Receptors, Thromboxane

2005
The thromboxane receptor antagonist S18886 but not aspirin inhibits atherogenesis in apo E-deficient mice: evidence that eicosanoids other than thromboxane contribute to atherosclerosis.
    Arteriosclerosis, thrombosis, and vascular biology, 2000, Volume: 20, Issue:7

    Atherosclerosis involves a complex array of factors, including leukocyte adhesion and platelet vasoactive factors. Aspirin, which is used to prevent secondary complications of atherosclerosis, inhibits platelet production of thromboxane (Tx) A(2). The actions of TxA(2) as well as of other arachidonic acid products, such as prostaglandin (PG) H(2), PGF(2alpha), hydroxyeicosatetraenoic acids, and isoprostanes, can be effectively antagonized by blocking thromboxane (TP) receptors. The purpose of this study was to determine the role of platelet-derived TxA(2) in atherosclerotic lesion development by comparing the effects of aspirin and the TP receptor antagonist S18886. The effect of 11 weeks of treatment with aspirin (30 mg. kg(-1). d(-1)) or S18886 (5 mg. kg(-1). d(-1)) on aortic root atherosclerotic lesions, serum levels of intercellular adhesion molecule-1 (ICAM-1), and the TxA(2) metabolite TxB(2) was determined in apolipoprotein E-deficient mice at 21 weeks of age. Both treatments did not affect body or heart weight or serum cholesterol levels. Aspirin, to a greater extent than S18886, significantly decreased serum TxB(2) levels, indicating the greater efficacy of aspirin in preventing platelet synthesis of TxA(2). S18886, but not aspirin, significantly decreased aortic root lesions as well as serum ICAM-1 levels. S18886 also prevented the increased expression of ICAM-1 in cultured human endothelial cells stimulated by the TP receptor agonist U46619. These results indicate that inhibition of platelet TxA(2) synthesis with aspirin has no significant effect on atherogenesis or adhesion molecule levels. The effects of S18886 suggest that blockade of TP receptors inhibits atherosclerosis by a mechanism independent of platelet-derived TxA(2), perhaps by preventing the expression of adhesion molecules whose expression is stimulated by eicosanoids other than TxA(2).

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Aorta; Apolipoproteins E; Arteriosclerosis; Aspirin; Body Weight; Cell Adhesion; Cholesterol; Endothelium, Vascular; Female; Humans; Intercellular Adhesion Molecule-1; Mice; Mice, Inbred C57BL; Mice, Mutant Strains; Naphthalenes; Platelet Aggregation Inhibitors; Propionates; Receptors, Thromboxane; Tetrahydronaphthalenes; Thromboxane A2; Thromboxane B2; U937 Cells; Umbilical Veins; Vasoconstrictor Agents

2000