terameprocol has been researched along with Disease Models, Animal in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 1 (50.00) | 24.3611 |
2020's | 1 (50.00) | 2.80 |
Authors | Studies |
---|---|
Abrams, RPM; Bachani, M; Balasubramanian, A; Brimacombe, K; Dorjsuren, D; Eastman, RT; Hall, MD; Jadhav, A; Lee, MH; Li, W; Malik, N; Nath, A; Padmanabhan, R; Simeonov, A; Steiner, JP; Teramoto, T; Yasgar, A; Zakharov, AV | 1 |
Costa, R; Ducret, T; Ferreira, R; Ferreira-Pinto, MJ; Henriques-Coelho, T; Justino, J; Leite-Moreira, AF; Moreira-Gonçalves, D; Nogueira-Ferreira, R; Quignard, JF; Savineau, JP; Silva, AF; Vitorino, R | 1 |
2 other study(ies) available for terameprocol and Disease Models, Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
HMGB1 down-regulation mediates terameprocol vascular anti-proliferative effect in experimental pulmonary hypertension.
Topics: Animals; Antihypertensive Agents; Apoptosis; Cell Proliferation; Cells, Cultured; Disease Models, Animal; Dose-Response Relationship, Drug; Down-Regulation; Hemodynamics; HMGB1 Protein; Hypertension; Male; Masoprocol; Monocrotaline; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Protein Interaction Maps; Proteomics; Pulmonary Artery; Rats, Wistar; Recovery of Function; Time Factors; Vascular Remodeling; Ventricular Function, Left; Ventricular Function, Right; Ventricular Remodeling | 2017 |