ter-199 has been researched along with Disease-Models--Animal* in 2 studies
2 other study(ies) available for ter-199 and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Evaluation of Glutathione S-Transferase Inhibition Effects on Idiopathic Pulmonary Fibrosis Therapy with a Near-Infrared Fluorescent Probe in Cell and Mice Models.
Idiopathic pulmonary fibrosis (IPF) is a lung-limited and progressive fibrotic disease. The early diagnosis and therapies of IPF are still full of clinical challenges. Glutathione S-transferase (GSTs) plays significant roles in promoting the formation of pulmonary fibrosis. Herein, we report a fluorescent probe (Cy-GST) for the detection of GSTs concentration fluctuations in cells and in mice models. The probe can selectively and sensitively respond to GSTs with an "off-on" type fluorescence switch. Our results demonstrated that the level of intracellular GSTs increase in the pulmonary fibrosis cells and mice models. And the IPF patients hold high levels of GSTs concentrations. Thus, GSTs are likely to play important roles in pulmonary fibrosis. The inhibitor of GSTs TLK117 can reduce the severity of pulmonary fibrosis. The synergistic treatment of TLK117 and pirfenidone have better therapeutic effects than only using pirfenidone in pulmonary fibrosis mice models. The level of GSTs in IPF may be a new potential marker for IPF diagnosis. And the inhibition of GSTs may be a new therapeutic strategy for IPF treatment. Topics: Animals; Carbocyanines; Disease Models, Animal; Enzyme Inhibitors; Fluorescent Dyes; Glutathione; Glutathione Transferase; Idiopathic Pulmonary Fibrosis; Infrared Rays; Mice; Mice, Inbred C57BL; Optical Imaging; Particle Size; Surface Properties | 2019 |