tenofovir-disoproxil-fumarate and Disease-Models--Animal

tenofovir-disoproxil-fumarate has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for tenofovir-disoproxil-fumarate and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Antiviral effects of lamivudine, emtricitabine, adefovir dipivoxil, and tenofovir disoproxil fumarate administered orally alone and in combination to woodchucks with chronic woodchuck hepatitis virus infection.
    Antimicrobial agents and chemotherapy, 2008, Volume: 52, Issue:10

    Adefovir dipivoxil (ADV) and tenofovir disoproxil fumarate (TDF) are nucleotide analogs that inhibit the replication of wild-type hepatitis B virus (HBV) and lamivudine (3TC)-resistant virus in HBV-infected patients, including those who are coinfected with human immunodeficiency virus. The combination of ADV or TDF with other nucleoside analogs is a proposed strategy for managing antiviral drug resistance during the treatment of chronic HBV infection. The antiviral effect of oral ADV or TDF, alone or in combination with 3TC or emtricitabine (FTC), against chronic woodchuck hepatitis virus (WHV) infection was evaluated in a placebo-controlled study in the woodchuck, an established and predictive model for antiviral therapy. Once-daily treatment for 48 weeks with ADV plus 3TC or TDF plus FTC significantly reduced serum WHV viremia levels from the pretreatment level by 6.2 log(10) and 6.1 log(10) genome equivalents/ml serum, respectively, followed by TDF plus 3TC (5.6 log(10) genome equivalents/ml), ADV alone (4.8 log(10) genome equivalents/ml), ADV plus FTC (one survivor) (4.4 log(10) genome equivalents/ml), TDF alone (2.9 log(10) genome equivalents/ml), 3TC alone (2.7 log(10) genome equivalents/ml), and FTC alone (2.0 log(10) genome equivalents/ml). Individual woodchucks across all treatment groups also demonstrated pronounced declines in serum WHV surface antigen, characteristically accompanied by declines in hepatic WHV replication and the hepatic expression of WHV antigens. Most woodchucks had prompt recrudescence of WHV replication after drug withdrawal, but individual woodchucks across treatment groups had sustained effects. No signs of toxicity were observed for any of the drugs or drug combinations administered. In conclusion, the oral administration of 3TC, FTC, ADV, and TDF alone and in combination was safe and effective in the woodchuck model of HBV infection.

    Topics: Adenine; Animals; Antigens, Viral; Antiviral Agents; Deoxycytidine; Disease Models, Animal; DNA, Viral; Drug Therapy, Combination; Emtricitabine; Hepatitis B Virus, Woodchuck; Hepatitis B, Chronic; Humans; Lamivudine; Liver; Marmota; Organophosphonates; RNA, Viral; Rodent Diseases; Tenofovir; Virus Replication

2008