tellurium has been researched along with Nasopharyngeal-Neoplasms* in 3 studies
3 other study(ies) available for tellurium and Nasopharyngeal-Neoplasms
Article | Year |
---|---|
Plasmon enhanced broadband photoelectrochemical response of ZnO/CdTe/Bi nanoarrays for quantitative analysis of nasopharyngeal carcinoma in a recyclable microfluidic biosensing chip.
Traction and quantitative detection of trace amount of target cells inside of biochip system in real-time has been a challenge for biomedical and clinical researchers. In this manuscript, we report fabrication of a photoelectrochemical platform that has integrated both biometric recognition and signal acquisition through microfabrication technology. In this chip, a ternary ZnO/CdTe/Bi nanorod array is fabricated, which significantly extends the absorption wavelength from the UV to the visible and even near-infrared regions for both photocarrier generation and surface plasmon resonance, ultimately achieving the amplification of initial photocurrent responses. The artificially designed aptamers with amino groups are assembled on the surface of the outermost Bi nanoparticles, which are used as signal probes due to the specific recognition to the nasopharyngeal carcinoma 5-8F cell. We demonstrate that different concentration of 5-8F cells is captured by aptamers, and the signal changes accordingly with the amount of the cells that have been trapped. As a result, the proposed biochip demonstrates rapid response in a wide linear range of 10 Topics: Biosensing Techniques; Cadmium Compounds; Electrochemical Techniques; Humans; Limit of Detection; Microfluidics; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Quantum Dots; Tellurium; Zinc Oxide | 2022 |
Conjugates of folic acids with BSA-coated quantum dots for cancer cell targeting and imaging by single-photon and two-photon excitation.
Bovine serum albumin (BSA)-coated CdTe/ZnS quantum dots (BSA-QDs) were selected to conjugate with folic acid (FA), forming FA-BSA-QDs. This study aims to develop these small FA-BSA-QDs (less than 10 nm) for the diagnosis of cancers in which the FA receptor (FR) is overexpressed. The enhancement of cellular uptake in FR-positive human nasopharyngeal carcinoma cells (KB cells) for FA-BSA-QDs was found by means of confocal fluorescence microscopy under single-photon and two-photon excitation. The uptake enhancement for FA-BSA-QDs was further evaluated by flow-cytometric analysis in 10(4) KB cells, and was about 3 times higher than for BSA-QDs on average. The uptake enhancement was suppressed when KB cells had been pretreated with excess FA, reflecting that the enhancement was mediated by the association of FR at cell membranes with FA-BSA-QDs. When human embryonic kidney cells (293T) (FR-negative cells) and KB cells, respectively, were incubated with FA-BSA-QDs (1 μM) for 40 min, the FA-BSA-QD uptake by 293T cells was much weaker than that by KB cells, demonstrating that FA-BSA-QDs could undergo preferential binding on FR-positive cancer cells. These characteristics suggest that FA-BSA-QDs are potential candidates for cancer diagnosis. Topics: Animals; Antineoplastic Agents; Cadmium Compounds; Carcinoma; Cattle; Cell Survival; Cells, Cultured; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Folic Acid; Humans; Microscopy, Confocal; Molecular Imaging; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Particle Size; Photons; Quantum Dots; Serum Albumin, Bovine; Structure-Activity Relationship; Sulfides; Surface Properties; Tellurium; Zinc Compounds | 2011 |
A new PET scanner with semiconductor detectors enables better identification of intratumoral inhomogeneity.
An autoradiography method revealed intratumoral inhomogeneity in various solid tumors. It is becoming increasingly important to estimate intratumoral inhomogeneity. However, with low spatial resolution and high scatter noise, it is difficult to detect intratumoral inhomogeneity in clinical settings. We developed a new PET system with CdTe semiconductor detectors to provide images with high spatial resolution and low scatter noise. Both phantom images and patients' images were analyzed to evaluate intratumoral inhomogeneity.. This study was performed with a cold spot phantom that had 6-mm-diameter cold sphenoid defects, a dual-cylinder phantom with an adjusted concentration of 1:2, and an "H"-shaped hot phantom. These were surrounded with water. Phantom images and (18)F-FDG PET images of patients with nasopharyngeal cancer were compared with conventional bismuth germanate PET images. Profile curves for the phantoms were measured as peak-to-valley ratios to define contrast. Intratumoral inhomogeneity and tumor edge sharpness were evaluated on the images of the patients.. The contrast obtained with the semiconductor PET scanner (1.53) was 28% higher than that obtained with the conventional scanner (1.20) for the 6-mm-diameter cold sphenoid phantom. The contrast obtained with the semiconductor PET scanner (1.43) was 27% higher than that obtained with the conventional scanner (1.13) for the dual-cylinder phantom. Similarly, the 2-mm cold region between 1-mm hot rods was identified only by the new PET scanner and not by the conventional scanner. The new PET scanner identified intratumoral inhomogeneity in more detail than the conventional scanner in 6 of 10 patients. The tumor edge was sharper on the images obtained with the new PET scanner than on those obtained with the conventional scanner.. These phantom and clinical studies suggested that this new PET scanner has the potential for better identification of intratumoral inhomogeneity, probably because of its high spatial resolution and low scatter noise. Topics: Adult; Aged; Bismuth; Cadmium Compounds; Carcinoma, Squamous Cell; Female; Germanium; Glucose; Humans; Male; Nasopharyngeal Neoplasms; Neoplasms; Phantoms, Imaging; Positron-Emission Tomography; Semiconductors; Tellurium; Time Factors | 2009 |