tellurium and Colorectal-Neoplasms

tellurium has been researched along with Colorectal-Neoplasms* in 2 studies

Other Studies

2 other study(ies) available for tellurium and Colorectal-Neoplasms

ArticleYear
The Evaluation of Colorectal Cancer Risk in Serum by anti-DESMIN-conjugated CdTe/CdS Quantum Dots.
    Clinical laboratory, 2017, Mar-01, Volume: 63, Issue:3

    DESMIN is a novel prognostic predictor and therapeutic target for colorectal cancer (CRC). Enzyme-linked immunosorbent assay (ELISA) and electrochemiluminescence (ELC) assays are large-scale and highcost projects; therefore, it is necessary to develop a new, fast, and simple yet highly sensitive and specific method to detect DESMIN in serum. Semiconducting quantum dots (QDs) possess high fluorescence quantum yield, stability against photobleaching, and size-controlled luminescence properties, thus being utilized in photoelectrochemical tumor marker detection, especially in ameliorating the diagnostic value in complex biological ambient ionization. However, CdTe/CdS quantum dots (QDs) have not been applied in detecting DESMIN in serum.. DESMIN in serum has been established using anti-DESMIN-conjugated CdTe/CdS quantum dots (QDs) and measurements. The assay sensitivity was determined by measurement of quenched fluorescence intensity of DESMIN at 0.1, 0.5, 1.0, 2.0, or 5.0 ng/mL in PBS or 0.25%, 0.5%, 1.0%, 2.0%, or 5% human serum diluted in PBS. The assay was optimized under different pH (7.00 - 7.40) for different reaction durations (10 - 60 minutes). The specificity of anti-DESMIN-QDs was determined by testing the interference of DESMIN activity with CEA, IgG, or AFP, each at 1 ng/mL.. Under the optimized incubation time (30 minutes) at room temperature and optimal pH 7.1 - 7.2, a correlation between the decreased fluorescence intensity of anti-DESMIN-conjugated CdTe/CdS QDs and the concentration of DESMIN in the range from 0.05 to 100 ng/mL, was established. The sensitivity for the detection of DESMIN in the range from 0.05 to 100 ng/mL, with a detection limit of 0.02 ng/mL. The assay presented a high specificity because the anti-DESMIN-conjugated CdTe/CdS QDs only reacted with ABR1B10 in the sera in the presence of CEA, IgG or AFP.. The immunofluorescence assay to detect DESMIN in serum using anti-DEMSIN-conjugated CdTe/ CdS QDs was fast and simple yet presented high sensitivity and specificity. Our method provides a promising tool for early prediction of CRC risk.

    Topics: Cadmium Compounds; Colorectal Neoplasms; Desmin; Humans; Quantum Dots; Tellurium

2017
Hydrothermal synthesis of GSH-TGA co-capped CdTe quantum dots and their application in labeling colorectal cancer cells.
    Colloids and surfaces. B, Biointerfaces, 2012, Jun-15, Volume: 95

    We have successfully synthesized GSH and TGA co-capped CdTe quantum dots (QDs) with good biological compatibility and high fluorescence intensity. The effects of different reaction time, temperature, pH value, ligand concentration and the molar ratio of GSH/TGA were carefully investigated to optimize the synthesis condition. The optical properties of as-prepared CdTe QDs were studied by UV-visible absorption spectrum and fluorescence spectrum, meanwhile their structure and morphology were characterized using transmission electron microscope (TEM), Fourier transform infrared spectra (FT-IR) and X-ray powder diffraction (XRD). Compared with the CdTe QDs that are single-capped with either GSH or TGA, the GSH-TGA co-capped CdTe QDs demonstrated significantly improved fluorescence intensity and optical stability. In addition, GSH-TGA co-capped CdTe QDs were conjugated to amonoclonal antibody ND-1. The GSH-TGA co-capped CdTe QDs-antibody probe was successfully used to label colorectal cancer cells, CCL187, in vitro.

    Topics: Cadmium Compounds; Colorectal Neoplasms; Glutathione; Hot Temperature; Humans; Molecular Imaging; Quantum Dots; Tellurium; Thioglycolates

2012