tellurium has been researched along with Cell-Transformation--Neoplastic* in 2 studies
2 other study(ies) available for tellurium and Cell-Transformation--Neoplastic
Article | Year |
---|---|
Acute and chronic cadmium telluride quantum dots-exposed human bronchial epithelial cells: The effects of particle sizes on their cytotoxicity and carcinogenicity.
Quantum dots (QDs) are semiconducting nanocrystals with unique optical properties. When coated with shell/capping, QDs are not deleterious to cells and organisms. However, when QDs are retained in the cellular environment for a certain period of time, their coatings may be degraded, yielding "naked" QDs. Although some studies have documented the acute effects of cadmium telluride (CdTe) QDs in various cell lines, however, to our knowledge, there are no published studies on the chronic effects of CdTe QDs in normal lung cells. In this study, we therefore sought to study the effects of CdTe QDs of various particle sizes on their cytotoxicity and carcinogenicity in normal human bronchial epithelial cells (BEAS-2B). A total of three particle sizes of CdTe QD with emission maximum at 520, 580, and 730 nm were employed (abbreviated as 520Q, 580Q, and 730Q, respectively). Our results indicated that acute exposure to 520Q (∼2.04 nm in diameter) and 580Q (∼3.24 nm in diameter) elicited dose-dependent cytotoxicity; while acute exposure to 730Q (∼5.40 nm in diameter) elicited negligible cytotoxicity in BEAS-2B cells. Notably, chronic exposure to CdTe QD of all three tested particle sizes induced BEAS-2B cell transformation as evidenced by enhanced cell migration and anchorage-independent growth on soft agar. Taken together, our findings suggest that CdTe QDs are potent human lung carcinogens. Topics: Acute Disease; Alveolar Epithelial Cells; Bronchial Neoplasms; Cadmium Compounds; Cell Line; Cell Survival; Cell Transformation, Neoplastic; Chronic Disease; Dose-Response Relationship, Drug; Humans; Particle Size; Quantum Dots; Tellurium; Toxicity Tests | 2018 |
Evaluation of tellurium toxicity in transformed and non-transformed human colon cells.
Diphenyl ditelluride (DPDT) and tellurium tetrachloride (TeCl(4)) were evaluated for toxicity in transformed (HT-29, Caco-2) and non-transformed colon cells (CCD-18Co). Significant decreases in viability were observed with DPDT exposure in HT-29 (62.5-1000 μM), Caco-2 (31.25-1000 μM) and CCD-18Co cells (500-1000 μM) and with TeCl(4) in HT-29 (31.25-1000 μM), Caco-2 (31.25-1000 μM) and CCD-18Co cells (500-1000 μM). Light microscopy confirmed viability analysis. Significant increases in caspase 3/7 and 9 activity were observed with DPDT in HT-29 (500-1000 μM) and CCD-18Co cells (1000 μM) indicating apoptosis. No significant increases in caspases were seen with TeCl(4) indicating necrosis. Apoptosis or necrosis was confirmed with fluorescent staining (FITC-Annexin, Hoechst 33342 and Ethidium Homodimer). Significant decreases in GSH/GSSG ratio were observed with DPDT in HT-29 (62.5-1000 μM), and CCD-18Co cells (1000 μM) and with TeCl(4) in HT-29 (62.5-1000 μM) and CCD-18Co cells (250-1000 μM). We concluded that cells treated with DPDT resulted in apoptosis and TeCl(4) treatment in necrosis. GSH/GSSG ratio shifts indicate oxidative mechanisms are involved. Topics: Benzene Derivatives; Caco-2 Cells; Caspases; Cell Transformation, Neoplastic; Hazardous Substances; HT29 Cells; Humans; Organometallic Compounds; Tellurium | 2012 |