tectorigenin has been researched along with Non-alcoholic-Fatty-Liver-Disease* in 2 studies
2 other study(ies) available for tectorigenin and Non-alcoholic-Fatty-Liver-Disease
Article | Year |
---|---|
The monomer TEC of blueberry improves NASH by augmenting tRF-47-mediated autophagy/pyroptosis signaling pathway.
Nonalcoholic steatohepatitis (NASH) is one of the most common liver diseases and has no safe and effective drug for treatment. We have previously reported the function of blueberry, but the effective monomer and related molecular mechanism remain unclear.. The monomer of blueberry was examined by ultra performance liquid chromatography-mass spectrometry (UPLC-MS). The NASH cell model was constructed by exposing HepG2 cells to free fatty acids. The NASH mouse model was induced by a high-fat diet for 12 weeks. NASH cell and mouse models were treated with different concentrations of blueberry monomers. The molecular mechanism was studied by Oil Red O staining, ELISA, enzyme activity, haematoxylin-eosin (H&E) staining, immunohistochemistry, immunofluorescence, western blot, RNA sequencing, and qRT-PCR.. We identified one of the main monomer of blueberry as tectorigenin (TEC). Cyanidin-3-O glucoside (C3G) and TEC could significantly inhibit the formation of lipid droplets in steatosis hepatocytes, and the effect of TEC on the formation of lipid droplets was significantly higher than that of C3G. TEC can promote cell proliferation and inhibit the release of inflammatory mediators in NASH cell model. Additionally, TEC administration provided a protective role against high-fat diets induced lipid damage, and suppressed lipid accumulation. In NASH mouse model, TEC can activate autophagy, inhibit pyroptosis and the release of inflammatory mediators. In NASH cell model, TEC inhibited pyroptosis by stimulating autophagy. Then, small RNA sequencing revealed that TEC up-regulated the expression of tRF-47-58ZZJQJYSWRYVMMV5BO (tRF-47). The knockdown of tRF-47 blunted the beneficial effects of TEC on NASH in vitro, including inhibition of autophagy, activation of pyroptosis and release of inflammatory factors. Similarly, suppression of tRF-47 promoted the lipid injury and lipid deposition in vivo.. These results demonstrated that tRF-47-mediated autophagy and pyroptosis plays a vital role in the function of TEC to treat NASH, suggesting that TEC may be a promising drug for the treatment of NASH. Topics: Animals; Autophagy; Blueberry Plants; Chromatography, Liquid; Isoflavones; Mice; Non-alcoholic Fatty Liver Disease; Pyroptosis; Signal Transduction; Tandem Mass Spectrometry | 2022 |
Tectorigenin ameliorated high-fat diet-induced nonalcoholic fatty liver disease through anti-inflammation and modulating gut microbiota in mice.
Nonalcoholic fatty liver disease (NAFLD) is a complex pathogenesis of liver disease combined with liver inflammation and gut microbiota dysbiosis. Tectorigenin (Tg) is derived from many plants with excellent anti-inflammation activity. However, the beneficial effect of Tg on NAFLD associated with gut microbiota remained unclear. This study aimed to investigate the underlying beneficial effect of Tg on NAFLD in high-fat diet (HFD)-fed mice. Results showed that Tg alleviated lipid profiles and liver steatosis, and reduced serum lipopolysaccharide (LPS) and total bile acid (TBA) levels. Besides, RT-qPCR and Western blot suggested that Tg alleviated hepatic lipid accumulation through inhibiting the lipogenesis and promoting the lipolysis, prevented gut-derived LPS-induced liver inflammatory via restoring intestinal barrier and restraining pro-inflammatory cytokines release, meanwhile, promoted the BA circulation via activating BA receptor and promoting BA synthesis. Moreover, Tg reverted the HFD-induced gut microbial dysbiosis by promoting the growth of beneficial Akkermansia, and inhibiting the proportions of harmful microbes, including Blautia, Lachnoclostridium, Lachnospiraceae_UCG-006, Roseburia, Romboutsia and Faecalibaculum, which were highly correlated with NAFLD-related parameters in serum and liver. Thus, Tg could attenuate NAFLD through mediating the liver-gut axis, and it could be used as a dietary supplement for NAFLD treatment via its anti-inflammatory and prebiotic effects. Topics: Animals; Anti-Inflammatory Agents; Diet, High-Fat; Dysbiosis; Gastrointestinal Microbiome; Isoflavones; Lipopolysaccharides; Liver; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease | 2022 |