tectorigenin and Inflammation
tectorigenin has been researched along with Inflammation* in 6 studies
Other Studies
6 other study(ies) available for tectorigenin and Inflammation
Article | Year |
---|---|
Tectorigenin inhibits inflammation in keratinocytes by inhibition of NLRP3 inflammasome regulated by the TLR4/NF-κB pathway.
Psoriasis is a prevalent inflammatory skin disease characterized by excessive proliferation and abnormal differentiation of keratinocytes, and infiltration of inflammatory cells into the epidermis. However, the underlying mechanisms remain unclear. Tectorigenin is an active ingredient in traditional medicines and has anti-inflammatory activity. This research explored the effects of tectorigenin on the anti-inflammatory property, autophagy, and the underlying mechanisms in M5 ([IL-22, IL-17A, oncostatin M, IL-1α, and TNF-α])-stimulated HaCaT cells.. The in vitro model of mixed M5 cytokines-stimulated HaCaT keratinocytes was established to investigate the phenotypic features in psoriasis. Cell viability was assessed by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, cell proliferative rate by EdU (5-ethynyl-2'-deoxyuridine) assay, and autophagy was detected by immunofluorescence staining. After M5 exposure, the proliferative rate, protein expression of autophagy, and signaling activities of NLR family pyrin domain containing 3 (NLRP3) inflammasome and toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) were measured. The latter were quantitated using quantitative PCR and western blot, respectively. The inflammatory response was detected by enzyme-linked immunosorbent assay (ELISA).. Tectorigenin exerted a protective effect in ameliorating the hyperproliferation and inflammation of HaCaT keratinocytes induced by M5 cytokines. Furthermore, tectorigenin on keratinocytes seemed to inactivate NLRP3 inflammasome and inhibit cell proliferation and inflammation response via suppression of TLR4/NF-κB pathway.. This study proves that tectorigenin may be a potential therapeutic candidate for psoriasis treatment in future. Topics: Anti-Inflammatory Agents; Cytokines; Humans; Inflammasomes; Inflammation; Keratinocytes; NF-kappa B; NLR Family, Pyrin Domain-Containing 3 Protein; Psoriasis; Toll-Like Receptor 4 | 2023 |
A non-retinol retinoic acid receptor-γ (RAR-γ/NR1B3) selective agonist, tectorigenin, can effectively inhibit the ultraviolet A-induced skin damage.
Long-term ultraviolet (UV) exposure can cause inflammation, pigmentation and photoaging. All-trans retinoic acid (ATRA/tretinoin) is a commonly used retinoic acid receptor (RAR) agonist in the clinical treatment of UV-induced skin problems. However, the use of such drugs is often accompanied by systemic adverse reactions caused by nonspecific activation of RARs. Therefore, this study was designed to screen for a novel RAR-γ-selective agonist with high safety.. Molecular docking, dynamic simulation and Biacore were used to screen and identify novel RAR-γ-selective agonists. RT-PCR, ELISA, western blotting, immunofluorescence staining, flow cytometry and proteomic analysis were used to detect the effects of these novel RAR-γ selective agonists on UVA-induced inflammation and photoaging cell models. UVA-induced mouse models were used to evaluate the effects of tectorigenin on skin repair, ageing and inflammation.. Tectorigenin is a novel RAR-γ-selective agonist, which inhibits UV-induced oxidative damage, inflammatory factor release and matrix metalloproteinase (MMP) production. Tectorigenin can also reverse the UVA-induced loss of collagen. The results of the signalling pathway research showed that tectorigenin mainly affects the MAPK/JNK/AP-1 pathway. In animal experiments, tectorigenin showed better anti-inflammatory and anti-photoaging effects, and caused less skin irritation than ATRA. Nano-particle loaded tectorigenin significantly improved the utilization of tectorigenin.. Tectorignen is a non-retinol RAR-γ-selective agonist that can inhibit UV-induced skin damage and could be developed as a safe pharmaceutical component for the prevention of photoaging and skin inflammation. Topics: Animals; Dermatitis; Inflammation; Isoflavones; Mice; Molecular Docking Simulation; Proteomics; Receptors, Retinoic Acid; Tretinoin; Ultraviolet Rays | 2022 |
Tectorigenin alleviates intrahepatic cholestasis by inhibiting hepatic inflammation and bile accumulation via activation of PPARγ.
Increasing evidence suggests that human cholestasis is closely associated with the accumulation and activation of hepatic macrophages. Research indicates that activation of PPARγ exerts liver protective effects in cholestatic liver disease (CLD), particularly by ameliorating inflammation and fibrosis, thus limiting disease progression. However, existing PPARγ agonists, such as troglitazone and rosiglitazone, have significant side effects that prevent their clinical application in the treatment of CLD. In this study, we found that tectorigenin alleviates intrahepatic cholestasis in mice by activating PPARγ.. Wild-type mice were intragastrically administered α-naphthylisothiocyanate (ANIT) or fed a diet containing 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) to simultaneously establish an experimental model of intrahepatic cholestasis and tectorigenin intervention, followed by determination of intrahepatic cholestasis and the mechanisms involved. In addition, PPARγ-deficient mice were administered ANIT and/or tectorigenin to determine whether tectorigenin exerts its liver protective effect by activating PPARγ.. Treatment with tectorigenin alleviated intrahepatic cholestasis by inhibiting the recruitment and activation of hepatic macrophages and by promoting the expression of bile transporters via activation of PPARγ. Furthermore, tectorigenin increased expression of the bile salt export pump (BSEP) through enhanced PPARγ binding to the BSEP promoter. In PPARγ-deficient mice, the hepatoprotective effect of tectorigenin during cholestasis was blocked.. In conclusion, tectorigenin reduced the recruitment and activation of hepatic macrophages and enhanced the export of bile acids by activating PPARγ. Taken together, our results suggest that tectorigenin is a candidate compound for cholestasis treatment. Topics: Animals; Bile; Bile Acids and Salts; Cholestasis; Cholestasis, Intrahepatic; Inflammation; Isoflavones; Liver; Mice; PPAR gamma | 2021 |
Tectorigenin ablates the inflammation-induced epithelial-mesenchymal transition in a co-culture model of human lung carcinoma.
Tumors not only manage to escape from the host immune system, but they effectively contrive to benefit from infiltrating immune cells by modifying their functions so as to create a pro-inflammatory microenvironment favorable for tumor progression and metastasis. In this study we investigated if tectorigenin could suppress lung cancer-induced pro-inflammatory response generated from monocytes.. A549:THP1 co-culture model was set-up favoring release of pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α). Effect of tectorigenin on A549 imparted invasive phenotype of A549:THP-1 co-culture was monitored by cytokine release from monocytes, and metastasis/epithelial-mesenchymal transitiom (EMT) in A549 cells.. In a contact A549:THP1 co-culture model, THP-1 cells were activated by A549 cells favoring secretion of pro-inflammatory cytokines, TNF-α and IL-6. However, priming of A549 cells with tectorigenin for 24h repressed A549 cell-induced secretion of TNF-α and IL-6 by THP-1 cells. Tectorigenin induced change in functional phenotype of A549 cells rendered THP-1 cells non-responsive for the secretion of IL-6 and TNF-α in a contact co-culture setup. Additionally, conditioned media from this non-responsive A549:THP-1 co-culture suppressed metastatic potential of A549 cells as confirmed by the wound healing and transwell migration assays. These finding were further corroborated by decrease in expression of Snail with a concomitant increase in E-cadherin, the two signature markers of EMT.. These results clearly demonstrate the therapeutic potential of tectorigenin to prevent lung cancer elicited inflammatory and pro-metastatic response in monocytes and warrants further investigations to elucidate its mechanism of action. Topics: Cadherins; Cell Line, Tumor; Cell Migration Assays; Coculture Techniques; Cytokines; Epithelial-Mesenchymal Transition; Humans; Inflammation; Interleukin-6; Isoflavones; Lung Neoplasms; Monocytes; Neoplasm Invasiveness; Snail Family Transcription Factors; Transcription Factors; Tumor Necrosis Factor-alpha; Wound Healing | 2015 |
Tectorigenin inhibits the inflammation of LPS-induced acute lung injury in mice.
In a previous study, the anti-inflammatory effects of tectorigenin were disclosed. In this study, the anti-inflammatory effects of tectorigenin on acute lung injury using a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model were investigated. The cell-count in the bronchoalveolar lavage fluid (BALF) was measured. The animal lung edema degree was evaluated by the wet/dry weight (W/D) ratio. The superoxidase dismutase (SOD) activity and myeloperoxidase (MPO) activity was assayed using SOD and MPO kits, respectively. The levels of inflammatory mediators, including tumor necrosis factor-α (TNF-α), IL-1β, and IL-6 were assayed using an enzyme-linked immunosorbent assay method. Pathological changes of lung tissues were observed through HE staining. The inflammatory signal pathway related protein nuclear factor NF-κB p65 mRNA expression was measured by real-time PCR, and the protein level of NF-κB p65 was measured using Western blotting analysis.. The data showed that treatment with the tectorigenin markedly attenuated the inflammatory cell numbers in the BALF, decreased nuclear factor NF-κB p65 mRNA level and protein level in the lungs, and improved SOD activity and inhibited MPO activity. Histological studies showed that tectorigenin substantially inhibited LPS-induced neutrophils in lung tissue compared with the model group.. The results indicated that tectorigenin had a protective effect on LPS-induced ALI in mice. Topics: Acute Lung Injury; Animals; Bronchoalveolar Lavage Fluid; Cell Count; Female; Inflammation; Isoflavones; Lipopolysaccharides; Mice; Mice, Inbred BALB C; Peroxidase; Pulmonary Edema; Superoxide Dismutase | 2014 |
Tectorigenin Attenuates Palmitate-Induced Endothelial Insulin Resistance via Targeting ROS-Associated Inflammation and IRS-1 Pathway.
Tectorigenin is a plant isoflavonoid originally isolated from the dried flower of Pueraria thomsonii Benth. Although its anti-inflammatory and anti-hyperglycosemia effects have been well documented, the effect of tectorigenin on endothelial dysfunction insulin resistance involved has not yet been reported. Herein, this study aims to investigate the action of tectorigenin on amelioration of insulin resistance in the endothelium. Palmitic acid (PA) was chosen as a stimulant to induce ROS production in endothelial cells and successfully established insulin resistance evidenced by the specific impairment of insulin PI3K signaling. Tectorigenin effectively inhibited the ability of PA to induce the production of reactive oxygen species and collapse of mitochondrial membrane potential. Moreover, tectorigenin presented strong inhibition effect on ROS-associated inflammation, as TNF-α and IL-6 production in endothelial cells was greatly reduced with suppression of IKKβ/NF-κB phosphorylation and JNK activation. Tectorigenin also can inhibit inflammation-stimulated IRS-1 serine phosphorylation and restore the impaired insulin PI3K signaling, leading to a decreased NO production. These results demonstrated its positive regulation of insulin action in the endothelium. Meanwhile, tectorigenin down-regulated endothelin-1 and vascular cell adhesion molecule-1 overexpression, and restored the loss of insulin-mediated vasodilation in rat aorta. These findings suggested that tectorigenin could inhibit ROS-associated inflammation and ameliorated endothelial dysfunction implicated in insulin resistance through regulating IRS-1 function. Tectorigenin might have potential to be applied for the management of cardiovascular diseases involved in diabetes and insulin resistance. Topics: Animals; Disease Models, Animal; Endothelium, Vascular; Gene Expression Regulation; Human Umbilical Vein Endothelial Cells; Humans; Inflammation; Insulin Receptor Substrate Proteins; Insulin Resistance; Isoflavones; Male; Membrane Potential, Mitochondrial; Mitochondria; Palmitic Acid; Rats; Reactive Oxygen Species; Signal Transduction; Tumor Necrosis Factor-alpha | 2013 |