taurochenodeoxycholic-acid and Uremia

taurochenodeoxycholic-acid has been researched along with Uremia* in 1 studies

Other Studies

1 other study(ies) available for taurochenodeoxycholic-acid and Uremia

ArticleYear
Defective interplay between mTORC1 activity and endoplasmic reticulum stress-unfolded protein response in uremic vascular calcification.
    American journal of physiology. Renal physiology, 2018, 06-01, Volume: 314, Issue:6

    Vascular calcification increases the risk of cardiovascular disease and death in patients with chronic kidney disease (CKD). Increased activity of mammalian target of rapamycin complex 1 (mTORC1) and endoplasmic reticulum (ER) stress-unfolded protein response (UPR) are independently reported to partake in the pathogenesis of vascular calcification in CKD. However, the association between mTORC1 activity and ER stress-UPR remains unknown. We report here that components of the uremic state [activation of the receptor for advanced glycation end products (RAGE) and hyperphosphatemia] potentiate vascular smooth muscle cell (VSMC) calcification by inducing persistent and exaggerated activity of mTORC1. This gives rise to prolonged and excessive ER stress-UPR as well as attenuated levels of sestrin 1 ( Sesn1) and Sesn3 feeding back to inhibit mTORC1 activity. Activating transcription factor 4 arising from the UPR mediates cell death via expression of CCAAT/enhancer-binding protein (c/EBP) homologous protein (CHOP), impairs the generation of pyrophosphate, a potent inhibitor of mineralization, and potentiates VSMC transdifferentiation to the osteochondrocytic phenotype. Short-term treatment of CKD mice with rapamycin, an inhibitor of mTORC1, or tauroursodeoxycholic acid, a bile acid that restores ER homeostasis, normalized mTORC1 activity, molecular markers of UPR, and calcium content of aortas. Collectively, these data highlight that increased and/or protracted mTORC1 activity arising from the uremic state leads to dysregulated ER stress-UPR and VSMC calcification. Manipulation of the mTORC1-ER stress-UPR pathway opens up new therapeutic strategies for the prevention and treatment of vascular calcification in CKD.

    Topics: Activating Transcription Factor 4; Animals; Aorta; Aortic Diseases; Cell Death; Cell Proliferation; Cell Transdifferentiation; Disease Models, Animal; Endoplasmic Reticulum Stress; Extracellular Signal-Regulated MAP Kinases; HEK293 Cells; Humans; Mechanistic Target of Rapamycin Complex 1; Mice, Mutant Strains; Muscle, Smooth, Vascular; Osteogenesis; Phosphorylation; Receptor for Advanced Glycation End Products; S100 Proteins; Signal Transduction; Sirolimus; Taurochenodeoxycholic Acid; Unfolded Protein Response; Uremia; Vascular Calcification

2018