taurochenodeoxycholic-acid has been researched along with Uremia* in 1 studies
1 other study(ies) available for taurochenodeoxycholic-acid and Uremia
Article | Year |
---|---|
Defective interplay between mTORC1 activity and endoplasmic reticulum stress-unfolded protein response in uremic vascular calcification.
Vascular calcification increases the risk of cardiovascular disease and death in patients with chronic kidney disease (CKD). Increased activity of mammalian target of rapamycin complex 1 (mTORC1) and endoplasmic reticulum (ER) stress-unfolded protein response (UPR) are independently reported to partake in the pathogenesis of vascular calcification in CKD. However, the association between mTORC1 activity and ER stress-UPR remains unknown. We report here that components of the uremic state [activation of the receptor for advanced glycation end products (RAGE) and hyperphosphatemia] potentiate vascular smooth muscle cell (VSMC) calcification by inducing persistent and exaggerated activity of mTORC1. This gives rise to prolonged and excessive ER stress-UPR as well as attenuated levels of sestrin 1 ( Sesn1) and Sesn3 feeding back to inhibit mTORC1 activity. Activating transcription factor 4 arising from the UPR mediates cell death via expression of CCAAT/enhancer-binding protein (c/EBP) homologous protein (CHOP), impairs the generation of pyrophosphate, a potent inhibitor of mineralization, and potentiates VSMC transdifferentiation to the osteochondrocytic phenotype. Short-term treatment of CKD mice with rapamycin, an inhibitor of mTORC1, or tauroursodeoxycholic acid, a bile acid that restores ER homeostasis, normalized mTORC1 activity, molecular markers of UPR, and calcium content of aortas. Collectively, these data highlight that increased and/or protracted mTORC1 activity arising from the uremic state leads to dysregulated ER stress-UPR and VSMC calcification. Manipulation of the mTORC1-ER stress-UPR pathway opens up new therapeutic strategies for the prevention and treatment of vascular calcification in CKD. Topics: Activating Transcription Factor 4; Animals; Aorta; Aortic Diseases; Cell Death; Cell Proliferation; Cell Transdifferentiation; Disease Models, Animal; Endoplasmic Reticulum Stress; Extracellular Signal-Regulated MAP Kinases; HEK293 Cells; Humans; Mechanistic Target of Rapamycin Complex 1; Mice, Mutant Strains; Muscle, Smooth, Vascular; Osteogenesis; Phosphorylation; Receptor for Advanced Glycation End Products; S100 Proteins; Signal Transduction; Sirolimus; Taurochenodeoxycholic Acid; Unfolded Protein Response; Uremia; Vascular Calcification | 2018 |