taurochenodeoxycholic-acid and Hemolysis

taurochenodeoxycholic-acid has been researched along with Hemolysis* in 2 studies

Other Studies

2 other study(ies) available for taurochenodeoxycholic-acid and Hemolysis

ArticleYear
Bile Acid-Induced Suicidal Erythrocyte Death.
    Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2016, Volume: 38, Issue:4

    In nucleated cells, bile acids may activate cation channels subsequently leading to entry of Ca2+. In erythrocytes, increase of cytosolic Ca2+ activity triggers eryptosis, the suicidal death of erythrocytes characterized by phosphatidylserine exposure at the cell surface and cell shrinkage. Eryptosis is triggered by bile duct ligation, an effect partially attributed to conjugated bilirubin. The present study explored, whether bile acids may stimulate eryptosis.. Phosphatidylserine exposing erythrocytes have been identified utilizing annexin V binding, cell volume estimated from forward scatter, cytosolic Ca2+ activity determined using Fluo-3 fluorescence, and ceramide abundance at the erythrocyte surface utilizing specific antibodies.. The exposure of human erythrocytes to glycochenodesoxycholic (GCDC) and taurochenodesoxycholic (TCDC) acid was followed by a significant decrease of forward scatter and significant increase of Fluo-3 fluorescence, ceramide abundance as well as annexin V binding. The effect on annexin V binding was significantly blunted, but not abolished by removal of extracellular Ca2+.. Bile acids stimulate suicidal cell death, an effect paralleled by and in part due to Ca2+ entry and ceramide. The bile acid induced eryptosis may in turn lead to accelerated clearance of circulating erythrocytes and, thus, may contribute to anemia in cholestatic patients.

    Topics: Aniline Compounds; Bile Acids and Salts; Calcium; Cells, Cultured; Ceramides; Cholagogues and Choleretics; Detergents; Eryptosis; Erythrocytes; Flow Cytometry; Glycochenodeoxycholic Acid; Hemolysis; Humans; Phosphatidylserines; Taurochenodeoxycholic Acid; Xanthenes

2016
Comparative cytotoxic and cytoprotective effects of taurohyodeoxycholic acid (THDCA) and tauroursodeoxycholic acid (TUDCA) in HepG2 cell line.
    Biochimica et biophysica acta, 2002, Jan-30, Volume: 1580, Issue:1

    This study was performed to compare the effects of two hydrophilic bile acids, taurohyodeoxycholic acid (THDCA) and tauroursodeoxycholic acid (TUDCA), on HepG2 cells. Cytotoxicity was evaluated at different times of exposure by incubating cells with increasing concentrations (50-800 micromol/l) of either bile acid, while their cytoprotective effect was tested in comparison with deoxycholic acid (DCA) (350 micromol/l and 750 micromol/l)-induced cytotoxicity. Culture media, harvested at the end of each incubation period, were analyzed to evaluate aspartate transaminase (AST), alanine transaminase and gamma-glutamyltranspeptidase release. In addition, the hemolytic effect of THDCA and TUDCA on human red blood cells was also determined. At 24 h of incubation neither THDCA nor TUDCA was cytotoxic at concentrations up to 200 and 400 micromol/l. At 800 micromol/l both THDCA and TUDCA induced a slight increase in AST release. At this concentration and with time of exposure prolonged up to 72 h, THDCA and TUDCA induced a progressive increase of AST release significantly (P<0.05) higher than that of controls being AST values for THDCA (2.97+/-0.88 time control value (tcv) at 48 h and 4.50+/-1.13 tcv at 72 h) significantly greater than those of TUDCA (1.50+/-0.20 tcv at 48 h and 1.80+/-0.43 tcv at 72 h) (P<0.01). In cytoprotection experiments, the addition of 50 micromol/l THDCA decreased only slightly (-5%) AST release induced by 350 micromol/l DCA, while the addition of 50 micromol/l TUDCA was significantly effective (-23%; P<0.05). Higher doses of THDCA or TUDCA did not reduce toxicity induced by 350 micromol/l DCA, but were much less toxic than an equimolar dose of DCA alone. At the concentration used in this experimental model neither THDCA nor TUDCA was hemolytic; however at a very high concentration (6 mmol/l) both bile acids induced 5-8% hemolysis. We conclude that bile acid molecules with a similar degree of hydrophilicity may show different cytotoxic and cytoprotective properties.

    Topics: Alanine Transaminase; Aspartate Aminotransferases; Deoxycholic Acid; Dose-Response Relationship, Drug; Erythrocytes; Hemolysis; Humans; Taurochenodeoxycholic Acid; Taurodeoxycholic Acid; Time Factors; Transglutaminases; Tumor Cells, Cultured

2002