taurochenodeoxycholic-acid and Body-Weight

taurochenodeoxycholic-acid has been researched along with Body-Weight* in 14 studies

Other Studies

14 other study(ies) available for taurochenodeoxycholic-acid and Body-Weight

ArticleYear
Energy homeostasis deregulation is attenuated by TUDCA treatment in streptozotocin-induced Alzheimer's disease mice model.
    Scientific reports, 2021, 09-13, Volume: 11, Issue:1

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia. While cognitive deficits remain the major manifestation of AD, metabolic and non-cognitive abnormalities, such as alterations in food intake, body weight and energy balance are also present, both in AD patients and animal models. In this sense, the tauroursodeoxycholic acid (TUDCA) has shown beneficial effects both in reducing the central and cognitive markers of AD, as well as in attenuating the metabolic disorders associated with it. We previously demonstrated that TUDCA improves glucose homeostasis and decreases the main AD neuromarkers in the streptozotocin-induced AD mouse model (Stz). Besides that, TUDCA-treated Stz mice showed lower body weight and adiposity. Here, we investigated the actions of TUDCA involved in the regulation of body weight and adiposity in Stz mice, since the effects of TUDCA in hypothalamic appetite control and energy homeostasis have not yet been explored in an AD mice model. The TUDCA-treated mice (Stz + TUDCA) displayed lower food intake, higher energy expenditure (EE) and respiratory quotient. In addition, we observed in the hypothalamus of the Stz + TUDCA mice reduced fluorescence and gene expression of inflammatory markers, as well as normalization of the orexigenic neuropeptides AgRP and NPY expression. Moreover, leptin-induced p-JAK2 and p-STAT3 signaling in the hypothalamus of Stz + TUDCA mice was improved, accompanied by reduced acute food intake after leptin stimulation. Taken together, we demonstrate that TUDCA treatment restores energy metabolism in Stz mice, a phenomenon that is associated with reduced food intake, increased EE and improved hypothalamic leptin signaling. These findings suggest treatment with TUDCA as a promising therapeutic intervention for the control of energy homeostasis in AD individuals.

    Topics: Adiposity; Alzheimer Disease; Animals; Biomarkers; Body Weight; Disease Management; Disease Models, Animal; Energy Metabolism; Gene Expression; Homeostasis; Immunohistochemistry; Inflammation Mediators; Leptin; Male; Mice; Organ Specificity; Signal Transduction; Streptozocin; Taurochenodeoxycholic Acid; Thermogenesis

2021
Maternal obesity-induced endoplasmic reticulum stress causes metabolic alterations and abnormal hypothalamic development in the offspring.
    PLoS biology, 2020, Volume: 18, Issue:3

    The steady increase in the prevalence of obesity and associated type II diabetes mellitus is a major health concern, particularly among children. Maternal obesity represents a risk factor that contributes to metabolic perturbations in the offspring. Endoplasmic reticulum (ER) stress has emerged as a critical mechanism involved in leptin resistance and type 2 diabetes in adult individuals. Here, we used a mouse model of maternal obesity to investigate the importance of early life ER stress in the nutritional programming of this metabolic disease. Offspring of obese dams developed glucose intolerance and displayed increased body weight, adiposity, and food intake. Moreover, maternal obesity disrupted the development of melanocortin circuits associated with neonatal hyperleptinemia and leptin resistance. ER stress-related genes were up-regulated in the hypothalamus of neonates born to obese mothers. Neonatal treatment with the ER stress-relieving drug tauroursodeoxycholic acid improved metabolic and neurodevelopmental deficits and reversed leptin resistance in the offspring of obese dams.

    Topics: alpha-MSH; Animals; Animals, Newborn; Axons; Body Composition; Body Weight; Diet; Endoplasmic Reticulum Stress; Female; Hypothalamus; Male; Mice, Inbred C57BL; Obesity, Maternal; Pancreas; Pregnancy; Prenatal Exposure Delayed Effects; Pro-Opiomelanocortin; Taurochenodeoxycholic Acid

2020
Inhibition of endoplasmic reticulum stress ameliorates cardiovascular injury in a rat model of metabolic syndrome.
    Journal of molecular and cellular cardiology, 2020, Volume: 143

    Metabolic (Met) syndrome is characterized by hypertension, insulin resistance and dyslipidaemia with high risk of cardiovascular disease. Endoplasmic reticulum (ER) stress is a key contributor in the pathogenesis of Met syndrome. The current study investigates the effect of Tauroursodeoxycholate (TUDCA), an ER stress inhibitor, on Met syndrome-induced cardiovascular complications and the possible underlying signalling mechanisms. Met syndrome was induced in rats, which were then treated with TUDCA. Body weight, blood pressure, glucose tolerance and insulin tolerance tests were performed. ER stress, survival and oxidative stress markers were measured in heart and aorta tissue. The results showed that TUDCA improved metabolic parameters in rats with Met syndrome. Treatment mitigated the Met syndrome-induced cardiovascular complications through upregulating survival markers and downregulating ER and oxidative stress markers. These results highlight the protective effect of ER stress inhibition as a potential target in the management of cardiovascular complications associated with Met syndrome.

    Topics: Animals; Biomarkers; Blood Pressure; Body Weight; Cardiovascular Diseases; Disease Models, Animal; Disease Susceptibility; Endoplasmic Reticulum Stress; Endothelium; Immunohistochemistry; Metabolic Syndrome; Phenotype; Rats; Taurochenodeoxycholic Acid

2020
The endoplasmic reticulum stress-autophagy pathway controls hypothalamic development and energy balance regulation in leptin-deficient neonates.
    Nature communications, 2020, 04-20, Volume: 11, Issue:1

    Obesity is associated with the activation of cellular responses, such as endoplasmic reticulum (ER) stress. Here, we show that leptin-deficient ob/ob mice display elevated hypothalamic ER stress as early as postnatal day 10, i.e., prior to the development of obesity in this mouse model. Neonatal treatment of ob/ob mice with the ER stress-relieving drug tauroursodeoxycholic acid (TUDCA) causes long-term amelioration of body weight, food intake, glucose homeostasis, and pro-opiomelanocortin (POMC) projections. Cells exposed to ER stress often activate autophagy. Accordingly, we report that in vitro induction of ER stress and neonatal leptin deficiency in vivo activate hypothalamic autophagy-related genes. Furthermore, genetic deletion of autophagy in pro-opiomelanocortin neurons of ob/ob mice worsens their glucose homeostasis, adiposity, hyperphagia, and POMC neuronal projections, all of which are ameliorated with neonatal TUDCA treatment. Together, our data highlight the importance of early life ER stress-autophagy pathway in influencing hypothalamic circuits and metabolic regulation.

    Topics: Adiposity; Animals; Antiviral Agents; Autophagy; Autophagy-Related Protein 7; Body Weight; Cholagogues and Choleretics; Disease Models, Animal; Eating; Endoplasmic Reticulum Stress; Energy Metabolism; Feeding Behavior; Homeostasis; Hyperphagia; Hypothalamus; Leptin; Male; Metabolic Diseases; Mice; Mice, Inbred Strains; Mice, Knockout; Neuroendocrinology; Neurogenesis; Obesity; Pro-Opiomelanocortin; Taurochenodeoxycholic Acid

2020
Tauroursodeoxycholate improves 2,4,6-trinitrobenzenesulfonic acid-induced experimental acute ulcerative colitis in mice.
    International immunopharmacology, 2016, Volume: 36

    Ulcerative colitis is a chronic nonspecific inflammatory disease of unknown cause. The aim of this study was to evaluate the anti-inflammatory effect of tauroursodeoxycholate in 2, 4, 6-trinitrobenzenesulfonic acid-induced experimental colitis in mice. After the induction of colitis for 24h, the mice were administrated orally with tauroursodeoxycholate (20, 40 and 60mg/kg) and sulfasalazine (500mg/kg) by gavage for 7 consecutive days. The inhibition effects were evaluated by the body of weight change, survival rate, macroscopical and histological evaluations. Besides, myeloperoxidase (MPO) activity, interleukin (IL)-1β, interferon (IFN)-γ and tumour necrosis factor-α (TNF-α) in colon tissue were also determined by enzyme-linked immunosorbent assay. Treatment with different doses of tauroursodeoxycholate (20, 40 and 60mg/kg) significantly improved the body weight change, decreased the macroscopic and histopathological scores. Compared with the model group, the accumulation of MPO activity, the colonic tissue levels of IL-1β, IFN-γ and TNF-α were significantly reduced in the tauroursodeoxycholate treated groups. Moreover, tauroursodeoxycholate assuaged the symptoms of colitis. These results suggested that tauroursodeoxycholate has an anti-inflammatory effect in TNBS-induced ulcerative colitis in mice.

    Topics: Acute Disease; Administration, Oral; Animals; Anti-Inflammatory Agents; Body Weight; Colitis, Ulcerative; Colon; Disease Models, Animal; Humans; Interferon-gamma; Interleukin-1beta; Male; Mice; Mice, Inbred BALB C; Peroxidase; Taurochenodeoxycholic Acid; Trinitrobenzenesulfonic Acid; Tumor Necrosis Factor-alpha

2016
Prenatal ethanol exposure causes glucose intolerance with increased hepatic gluconeogenesis and histone deacetylases in adult rat offspring: reversal by tauroursodeoxycholic acid.
    PloS one, 2013, Volume: 8, Issue:3

    Prenatal ethanol exposure results in increased glucose production in adult rat offspring and this may involve modulation of protein acetylation by cellular stress. We used adult male offspring of dams given ethanol during gestation days 1-7 (early), 8-14 (mid) and 15-21 (late) compared with those from control dams. A group of ethanol offspring was treated with tauroursodeoxycholic acid (TUDCA) for 3 weeks. We determined gluconeogenesis, phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase, hepatic free radicals, histone deacetylases (HDAC), acetylated foxo1, acetylated PEPCK, and C/EBP homologous protein as a marker of endoplasmic reticulum stress. Prenatal ethanol during either of the 3 weeks of pregnancy increased gluconeogenesis, gluconeogenic genes, oxidative and endoplasmic reticulum stresses, sirtuin-2 and HDAC3, 4, 5, and 7 in adult offspring. Conversely, prenatal ethanol reduced acetylation of foxo1 and PEPCK. Treatment of adult ethanol offspring with TUDCA reversed all these abnormalities. Thus, prenatal exposure of rats to ethanol results in long lasting oxidative and endoplasmic reticulum stresses explaining increased expression of gluconeogenic genes and HDAC proteins which, by deacetylating foxo1 and PEPCK, contribute to increased gluconeogenesis. These anomalies occurred regardless of the time of ethanol exposure during pregnancy, including early embryogenesis. As these anomalies were reversed by treatment of the adult offspring with TUDCA, this compound has therapeutic potentials in the treatment of glucose intolerance associated with prenatal ethanol exposure.

    Topics: Acetylation; Aging; Animals; Area Under Curve; Blood Glucose; Body Weight; Cell Nucleus; Endoplasmic Reticulum Stress; Ethanol; Female; Forkhead Transcription Factors; Free Radicals; Gluconeogenesis; Glucose Intolerance; Glucose Tolerance Test; Histone Deacetylases; Insulin; Liver; Male; Nerve Tissue Proteins; Pregnancy; Prenatal Exposure Delayed Effects; Rats; Rats, Sprague-Dawley; Stress, Physiological; Taurochenodeoxycholic Acid

2013
Reducing endoplasmic reticulum stress does not improve steatohepatitis in mice fed a methionine- and choline-deficient diet.
    American journal of physiology. Gastrointestinal and liver physiology, 2012, Volume: 303, Issue:1

    Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of nonalcoholic steatohepatitis. The ER stress response is activated in the livers of mice fed a methionine- and choline-deficient (MCD) diet, yet the role of ER stress in the pathogenesis of MCD diet-induced steatohepatitis is unknown. Using chemical chaperones on hepatic steatosis and markers of inflammation and fibrosis in mice fed a MCD diet, we aim to determine the effects of reducing ER stress. C57BL/6J mice were fed a MCD diet with or without the ER chemical chaperones 4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) for 2 wk. TUDCA and PBA effectively attenuated the ER stress response in MCD diet-fed mice, as evidenced by reduced protein levels of phosphorylated eukaryotic initiation factor 2α and phosphorylated JNK and suppression of mRNA levels of CCAAT/enhancer binding protein homologous protein, glucose-regulated protein 78 kDa, and X-box binding protein 1. However, PBA and TUDCA did not decrease MCD diet-induced hepatic steatosis. MCD diet-induced hepatic inflammation, as evidenced by increased plasma alanine aminotransferase and induction of hepatic TNFα expression, was also not reduced by PBA or TUDCA. PBA and TUDCA did not attenuate MCD diet-induced upregulation of the fibrosis-associated genes tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-9. ER chemical chaperones reduce MCD diet-induced ER stress, yet they do not improve MCD diet-induced hepatic steatosis, inflammation, or activation of genes associated with fibrosis. These data suggest that although the ER stress response is activated by the MCD diet, it does not have a primary role in the pathogenesis of MCD diet-induced steatohepatitis.

    Topics: Animals; Blood Glucose; Blotting, Western; Body Weight; Cholesterol; Choline Deficiency; Diet; Endoplasmic Reticulum; Fatty Liver; Gene Expression; Inflammation; Liver; Liver Cirrhosis; Male; Methionine; Mice; Mice, Inbred C57BL; Molecular Chaperones; Phenylbutyrates; Real-Time Polymerase Chain Reaction; Stress, Physiological; Taurochenodeoxycholic Acid

2012
Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue.
    Scientific reports, 2012, Volume: 2

    Adipose tissue plays a central role in maintaining metabolic homeostasis under normal conditions. Metabolic diseases such as obesity and type 2 diabetes are often accompanied by chronic inflammation and adipose tissue dysfunction. In this study, we observed that endoplasmic reticulum (ER) stress and the inflammatory response occurred in adipose tissue of mice fed a high-fat diet for a period of 16 weeks. After 16 weeks of feeding, ER stress markers increased and chronic inflammation occurred in adipose tissue. We found that ER stress is induced by free fatty acid (FFA)-mediated reactive oxygen species (ROS) generation and up-regulated gene expression of inflammatory cytokines in 3T3-L1 adipocytes. Oral administration to obese mice of chemical chaperons, which alleviate ER stress, improved chronic inflammation in adipose tissue, followed by the suppression of increased body weight and improved insulin signaling. These results indicate that ER stress plays important pathophysiological roles in obesity-induced adipose tissue dysfunction.

    Topics: 3T3-L1 Cells; Adipose Tissue; Administration, Oral; Animals; Body Weight; Butylamines; Chronic Disease; Cytokines; Diet, High-Fat; Endoplasmic Reticulum Stress; Fatty Acids, Nonesterified; Inflammation; Insulin; Male; Mice; Mice, Inbred C57BL; Obesity; Reactive Oxygen Species; Signal Transduction; Taurochenodeoxycholic Acid; Up-Regulation

2012
Neural dysregulation of peripheral insulin action and blood pressure by brain endoplasmic reticulum stress.
    Proceedings of the National Academy of Sciences of the United States of America, 2011, Feb-15, Volume: 108, Issue:7

    Chronic endoplasmic reticulum (ER) stress was recently revealed to affect hypothalamic neuroendocrine pathways that regulate feeding and body weight. However, it remains unexplored whether brain ER stress could use a neural route to rapidly cause the peripheral disorders that underlie the development of type 2 diabetes (T2D) and the metabolic syndrome. Using a pharmacologic model that delivered ER stress inducer thapsigargin into the brain, this study demonstrated that a short-term brain ER stress over 3 d was sufficient to induce glucose intolerance, systemic and hepatic insulin resistance, and blood pressure (BP) increase. The collection of these changes was accompanied by elevated sympathetic tone and prevented by sympathetic suppression. Molecular studies revealed that acute induction of metabolic disorders via brain ER stress was abrogated by NF-κB inhibition in the hypothalamus. Therapeutic experiments further revealed that acute inhibition of brain ER stress with tauroursodeoxycholic acid (TUDCA) partially reversed obesity-associated metabolic and blood pressure disorders. In conclusion, ER stress in the brain represents a mediator of the sympathetic disorders that underlie the development of insulin resistance syndrome and T2D.

    Topics: Animals; Blood Pressure; Blotting, Western; Body Weight; Diabetes Mellitus, Type 2; Eating; Endoplasmic Reticulum; Enzyme-Linked Immunosorbent Assay; Glucose Intolerance; Green Fluorescent Proteins; Hypothalamus; Immunoprecipitation; Insulin; Insulin Resistance; Male; Mice; Mice, Inbred C57BL; Neurosecretory Systems; NF-kappa B; Reverse Transcriptase Polymerase Chain Reaction; Stress, Physiological; Taurochenodeoxycholic Acid; Telemetry; Thapsigargin

2011
Effects of taurochenodeoxycholic acid on adjuvant arthritis in rats.
    International immunopharmacology, 2011, Volume: 11, Issue:12

    Taurochenodeoxycholic acid (TCDCA) is one of the main bioactive substances of animals' bile acid. In this study, we aimed to investigate the anti-arthritic effects and potential mechanism of TCDCA on adjuvant arthritis (AA) in rats. Freund's complete adjuvant (FCA) was used to induce AA in rats. Paw swelling, index of thymus and spleen and body weight growth rate were measured, and polyarthritis index and radiologic changes were observed. The production of TNF-α, IL-1β, IL-6 and IL-10 was detected by ELISA in serum and synoviocytes. mRNA expression of TNF-α, IL-1β, IL-6 and IL-10 was determined by real-time RT-PCR in synovium tissue and synoviocytes. In both prophylactic and therapeutic treatment, TCDCA significantly suppressed paw swelling and polyarthritis index, increased the loss body weight and index of thymus and spleen, and amended radiologic changes in AA rats. The overproduction and mRNA expression of TNF-α, IL-1β and IL-6 were remarkably suppressed in serum and synovium tissue of all TCDCA-treated rats, however, IL-10 was markedly increased in prophylactic treatment. In a definite concentration ranging from 300 μg/mL to 500 μg/mL, TCDCA showed marked inhibition in the overproduction and mRNA expression of TNF-α, IL-1β and IL-6 in synoviocytes in a concentration-dependent manner, but opposite action on IL-10. In conclusion, treatment with TCDCA confers a good anti-adjuvant arthritis activity in rats, which its reparative effects could be mediated via reduction of the protein and mRNA expression of TNF-α, IL-1β and IL-6, and augment of IL-10 in rats.

    Topics: Animals; Antirheumatic Agents; Arthritis, Experimental; Arthrography; Body Weight; Cytokines; Freund's Adjuvant; Joints; Male; Rats; Rats, Wistar; Severity of Illness Index; Spleen; Synovial Fluid; Taurochenodeoxycholic Acid; Thymus Gland; Treatment Outcome

2011
Endoplasmic reticulum stress in diabetic hearts abolishes erythropoietin-induced myocardial protection by impairment of phospho-glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeability transition.
    Diabetes, 2009, Volume: 58, Issue:12

    Alteration in endoplasmic reticulum (ER) stress in diabetic hearts and its effect on cytoprotective signaling are unclear. Here, we examine the hypothesis that ER stress in diabetic hearts impairs phospho-glycogen synthase kinase (GSK)-3beta-mediated suppression of mitochondrial permeability transition pore (mPTP) opening, compromising myocardial response to cytoprotective signaling.. A rat model of type 2 diabetes (OLETF) and its control (LETO) were treated with tauroursodeoxycholic acid (TUDCA) (100 mg . kg(-1) . day(-1) for 7 days), an ER stress modulator. Infarction was induced by 20-min coronary occlusion and 2-h reperfusion.. Levels of ER chaperones (GRP78 and GRP94) in the myocardium and level of nonphoshopho-GSK-3beta in the mitochondria were significantly higher in OLETF than in LETO rats. TUDCA normalized levels of GRP78 and GRP94 and mitochondrial GSK-3beta in OLETF rats. Administration of erythropoietin (EPO) induced phosphorylation of Akt and GSK-3beta and reduced infarct size (% risk area) from 47.4 +/- 5.2% to 23.9 +/- 3.5% in LETO hearts. However, neither phosphorylation of Akt and GSK-3beta nor infarct size limitation was induced by EPO in OLETF rats. The threshold for mPTP opening was significantly lower in mitochondria from EPO-treated OLETF rats than in those from EPO-treated LETO rats. TUDCA restored responses of GSK-3beta, mPTP opening threshold, and infarct size to EPO receptor activation in OLETF rats. There was a significant correlation between mPTP opening threshold and phospho-GSK-3beta-to-total GSK-3beta ratio in the mitochondrial fraction.. Disruption of protective signals leading to GSK-3beta phosphorylation and increase in mitochondrial GSK-3beta are dual mechanisms by which increased ER stress inhibits EPO-induced suppression of mPTP opening and cardioprotection in diabetic hearts.

    Topics: Animals; Blood Glucose; Body Weight; Calcium; Diabetes Mellitus, Type 2; Endoplasmic Reticulum; Erythropoietin; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Immunoblotting; Intracellular Membranes; Male; Membrane Potential, Mitochondrial; Mitochondria, Heart; Myocardial Infarction; Myocardial Reperfusion; Myocardium; Myocytes, Cardiac; Permeability; Phosphorylation; Rats; Rats, Inbred OLETF; Taurochenodeoxycholic Acid

2009
Cellular osmolytes reduce lens epithelial cell death and alleviate cataract formation in galactosemic rats.
    Molecular vision, 2007, Aug-10, Volume: 13

    Many cataractogenic stresses also induce endoplasmic reticulum (ER) stress in lens epithelial cells (LECs), which appears to be one of the universal inducers of cell death. In galactosemic rats, activation of ER stress results in the activation of the unfolded protein response (UPR)-dependent death pathway, production of reactive oxygen species (ROS), and cell death. All are induced and precede cataract formation. Cellular osmolytes such as 4-phenylbutyric acid (PBA), trimethylamine N-oxide (TMAO), and tauroursodeoxychoric acid (TUDCA) are known to suppress the induction of ER stress. We investigated whether these small molecules prevent cataract formation in galactose-fed rat lenses.. Cultured LECs were treated with galactose and each cellular osmolyte. Sprague-Dawley rats were fed a 50% galactose chow for 15 days with or without cellular osmolyte treatment. Similarly, selenite was injected subcutaneously into rats with or without cellular osmolytes. Calcein AM and ethidium homodimer-1 (EthD) were used to detect live and dead cells, respectively. The cellular osmolytes, PBA, TMAO, and TUDCA were tested for their ability to suppress LEC death and cataract formation.. Cellular osmolytes rescued cultured human LECs which were treated with the ER stressors. We administered these osmolytes either orally or by injection into galactosemic Sprague-Dawley rats. These rats had significantly reduced LEC death and partially delayed hypermature cataract formation. Since the UPR was not activated in cultured LECs treated with selenite, we used the selenite nuclear cataract as a UPR-independent death pathway control. In selenite-induced nuclear cataract in rats, cellular osmolytes did not prevent LEC death and did not alleviate cataract formation.. These results further establish that ER stress and LEC death play a vital role in certain types of cataract formation. In addition, cellular osmolytes may be potential prophylactic drugs for some types of cataracts.

    Topics: Animals; Body Weight; Cataract; Cell Death; Cell Survival; Cells, Cultured; Disease Models, Animal; Endoplasmic Reticulum; Epithelial Cells; Galactose; Galactosemias; Humans; Lens, Crystalline; Methylamines; Phenylbutyrates; Protein Folding; Rats; Rats, Sprague-Dawley; Sodium Selenite; Taurochenodeoxycholic Acid; Tunicamycin; Up-Regulation

2007
Taurochenodeoxycholic acid ameliorates and ursodeoxycholic acid exacerbates small intestinal inflammation.
    The American journal of physiology, 1997, Volume: 272, Issue:5 Pt 1

    Intraluminal bacteria, food intake, and bile play important roles in indomethacin-induced small intestinal inflammation in rats. Tauroursodeoxycholic acid (TUDCA) and ursodeoxycholic acid (UDCA) inhibit hydrophobic bile acid-induced damage in various types of cells. We investigated the effects of these bile acids along with the possible influence of other bile acids on this model of inflammation. Clinical and intestinal inflammatory parameters and bile secretion were assessed after 7-day dietary bile acid pretreatments and subsequent indomethacin injections. UDCA significantly enhanced indomethacin-associated reductions in food intake and body weight, increases in gross inflammatory scores and myeloperoxidase activity, and the shortening of small intestinal length. Taurochenodeoxycholic acid (TCDCA) significantly normalized the clinical inflammatory parameters, prevented indomethacin-induced increases in the biliary contents of secondary bile acids and hydrophobicity index, and tended to attenuate the intestinal inflammation. Although elevated biliary levels of muricholic acids and a decreased hydrophobicity index were evident before indomethacin injection in the TCDCA case, these alterations could not explain the TCDCA-mediated protection. Dietary TCDCA attenuates whereas UDCA exacerbates intestinal inflammation in this model. Alterations in the bile composition (increases in UDCA and chenodeoxycholic acid) may explain the observed modification effects.

    Topics: Animals; Bile; Blood; Body Weight; Diet; Dose-Response Relationship, Drug; Eating; Enteritis; Indomethacin; Intestine, Small; Male; Peroxidase; Rats; Rats, Sprague-Dawley; Taurochenodeoxycholic Acid; Ursodeoxycholic Acid

1997
Bile composition of adult baboons is influenced by breast versus formula feeding.
    Journal of pediatric gastroenterology and nutrition, 1991, Volume: 12, Issue:1

    We tested the hypothesis that infant cholesterol intake and breast- versus formula-feeding influence the bile cholesterol saturation index and bile acid conjugate composition in adult baboons at 7-8 years of age. We also measured the influence of the postweaning intake of dietary cholesterol and fat (saturated and unsaturated) on the effects of the infant diets. The 80 baboons were derived from six sires and 80 dams and randomly assigned at birth to breast-feeding or to one of three formulas containing about 2, 30, or 60 mg cholesterol/dl. After weaning at 16 weeks of age the animals were assigned to one of four adult diets, which contained 0.01 or 1.0 mg/kcal of cholesterol containing 40% of calories from saturated or unsaturated fat. The bile cholesterol saturation index was significantly higher at 7-8 years of age in baboons breast-fed as infants compared with those fed formula (87.0% versus 72.8%, p less than 0.004). The cholesterol saturation index was not significantly different among the three formula groups. Among baboons who were breast-fed and subsequently fed saturated fat as adults, the glycine/taurine (G/T) ratios of the bile acid conjugates were about three times those of baboons fed unsaturated fat (1.53 versus 0.47); whereas among formula-fed animals the type of fat did not influence the G/T ratio (interaction, p = 0.022). Adult baboons fed the three formulas in infancy had an inverse relationship of the G/T ratio to the level of formula cholesterol (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Animals; Bile; Body Weight; Breast Feeding; Cholesterol; Dietary Fats; Female; Food, Formulated; Glycochenodeoxycholic Acid; Glycocholic Acid; Glycodeoxycholic Acid; Longitudinal Studies; Male; Papio; Taurochenodeoxycholic Acid

1991