taurochenodeoxycholic-acid has been researched along with Bile-Reflux* in 2 studies
2 other study(ies) available for taurochenodeoxycholic-acid and Bile-Reflux
Article | Year |
---|---|
Pulsatile exposure to simulated reflux leads to changes in gene expression in a 3D model of oesophageal mucosa.
Oesophageal exposure to duodenogastroesophageal refluxate is implicated in the development of Barrett's metaplasia (BM), with increased risk of progression to oesophageal adenocarcinoma. The literature proposes that reflux exposure activates NF-κB, driving the aberrant expression of intestine-specific caudal-related homeobox (CDX) genes. However, early events in the pathogenesis of BM from normal epithelium are poorly understood. To investigate this, our study subjected a 3D model of the normal human oesophageal mucosa to repeated, pulsatile exposure to specific bile components and examined changes in gene expression. Initial 2D experiments with a range of bile salts observed that taurochenodeoxycholate (TCDC) impacted upon NF-κB activation without causing cell death. Informed by this, the 3D oesophageal model was repeatedly exposed to TCDC in the presence and absence of acid, and the epithelial cells underwent gene expression profiling. We identified ~300 differentially expressed genes following each treatment, with a large and significant overlap between treatments. Enrichment analysis (Broad GSEA, DAVID and Metacore™; GeneGo Inc) identified multiple gene sets related to cell signalling, inflammation, proliferation, differentiation and cell adhesion. Specifically NF-κB activation, Wnt signalling, cell adhesion and targets for the transcription factors PTF1A and HNF4α were highlighted. Our data suggest that HNF4α isoform switching may be an early event in Barrett's pathogenesis. CDX1/2 targets were, however, not enriched, suggesting that although CDX1/2 activation reportedly plays a role in BM development, it may not be an initial event. Our findings highlight new areas for investigation in the earliest stages of BM pathogenesis of oesophageal diseases and new potential therapeutic targets. Topics: Adenocarcinoma; Barrett Esophagus; Bile Acids and Salts; Bile Reflux; Cell Line; Cells, Cultured; Epithelial Cells; Esophageal Neoplasms; Esophagus; Gastroesophageal Reflux; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Hepatocyte Nuclear Factor 4; Humans; Hydrogen-Ion Concentration; Mucous Membrane; NF-kappa B; Oligonucleotide Array Sequence Analysis; Protein Isoforms; Taurochenodeoxycholic Acid; Transcription Factors | 2014 |
Regulation of the human mucin MUC4 by taurodeoxycholic and taurochenodeoxycholic bile acids in oesophageal cancer cells is mediated by hepatocyte nuclear factor 1alpha.
MUC4 (mucin 4) is a membrane-bound mucin overexpressed in the early steps of oesophageal carcinogenesis and implicated in tumour progression. We previously showed that bile acids, main components of gastro-oesophageal reflux and tumour promoters, up-regulate MUC4 expression [Mariette, Perrais, Leteurtre, Jonckheere, Hemon, Pigny, Batra, Aubert, Triboulet and Van Seuningen (2004) Biochem. J. 377, 701-708]. HNF (hepatocyte nuclear factor) 1alpha and HNF4alpha transcription factors are known to mediate bile acid effects, and we previously identified cis-elements for these factors in MUC4 distal promoter. Our aim was to demonstrate that these two transcription factors were directly involved in MUC4 activation by bile acids. MUC4, HNF1alpha and HNF4alpha expressions were evaluated by immunohistochemistry in human oesophageal tissues. Our results indicate that MUC4, HNF1alpha and HNF4alpha were co-expressed in oesophageal metaplastic and adenocarcinomatous tissues. Studies at the mRNA, promoter and protein levels indicated that HNF1alpha regulates endogenous MUC4 expression by binding to two cognate cis-elements respectively located at -3332/-3327 and -3040/-3028 in the distal promoter. We also showed by siRNA (small interfering RNA) approach, co-transfection and site-directed mutagenesis that HNF1alpha mediates taurodeoxycholic and taurochenodeoxycholic bile acid activation of endogenous MUC4 expression and transcription in a dose-dependent manner. In conclusion, these results describe a new mechanism of regulation of MUC4 expression by bile acids, in which HNF1alpha is a key mediator. These results bring new insights into MUC4 up-regulation in oesophageal carcinoma associated with bile reflux. Topics: Bile Reflux; Cell Line, Tumor; Esophageal Neoplasms; Gene Expression Regulation, Neoplastic; Hepatocyte Nuclear Factor 1-alpha; Hepatocyte Nuclear Factor 4; Humans; Immunohistochemistry; Mucin-4; Mucins; Promoter Regions, Genetic; RNA, Small Interfering; Taurochenodeoxycholic Acid; Taurodeoxycholic Acid; Transcription, Genetic; Transfection; Up-Regulation | 2007 |