taurochenodeoxycholic-acid has been researched along with Amyloid-Neuropathies--Familial* in 6 studies
2 review(s) available for taurochenodeoxycholic-acid and Amyloid-Neuropathies--Familial
Article | Year |
---|---|
The transthyretin amyloidoses: advances in therapy.
There are two forms of transthyretin (TTR) amyloidosis: non-hereditary and hereditary. The non-hereditary form (ATTRwt) is caused by native or wild-type TTR and was previously referred to as senile systemic amyloidosis. The hereditary form (ATTRm) is caused by variant TTR which results from a genetic mutation of TTR. The predominant effect of ATTRwt amyloidosis is on the heart, with patients having a greater left ventricular wall thickness at presentation than the devastating form which is light chain (AL) amyloidosis. ATTRm amyloidosis is broadly split into two categories: a type that predominantly affects the nervous system (often called familial amyloid polyneuropathy (FAP)) and one with a predilection for the heart (often called familial amyloid cardiomyopathy (FAC)). Approximately half of all TTR mutations known to express a clinical phenotype cause a cardiomyopathy. Since the introduction of orthotopic liver transplantation for ATTRm amyloidosis in 1991, several additional therapies have been developed. These therapies aim to provide a reduction or elimination of TTR from the plasma (through genetic approaches), stabilisation of the TTR molecule (to prevent deposition) and dissolution of the amyloid matrix. We describe the latest developments in these approaches to management, many of which are also applicable to wild-type amyloidosis. Topics: Amyloid Neuropathies, Familial; Anti-Inflammatory Agents, Non-Steroidal; Benzoxazoles; Doxycycline; Echocardiography; Humans; Liver Transplantation; Molecular Targeted Therapy; Prealbumin; Prognosis; RNA, Small Interfering; Taurochenodeoxycholic Acid | 2015 |
[Familial amyloid polyneuropathies: therapeutic issues].
Patients with familial amyloidpolyneuropathies (FAP) require multidisciplinary neurologic and cardiologic management, including specific treatments to control the progression of systemic amyloidogenesis, symptomatic treatment of peripheral and autonomic neuropathies, and management of severe organ involvement (heart, eyes, kidneys). The first-line specific treatment of choice for met30 TTR-FAP is liver transplantation (LT) which suppresses the main source of mutant TTR, halts the progression of neuropathy in 70% of cases, and doubles the median survival time. Dual kidney-liver or heart-liver transplantation may be appropriate for patients with severe renal or cardiac failure. Tafamidis (Vyndaqel(R), Pfizer), a novel stabilizer of tetrameric TTR, has shown short-term effectiveness in slowing the progression of peripheral neuropathy in very early stages of met30 TTR-FAP This drug should thus be proposed for stage 1 symptomatic polyneuropathy. Other innovative medicines (RNA interference, antisense oligonucleotides) have been developed to block hepatic production of both mutant and wildtype TTR (noxious in late-onset forms of NAH after age 50 years), and to remove amyloid deposits (monoclonal anti-SAP). Clinical trials should first include patients with late-onset FAP or non-met30 TTR-FAP who are less responsive to LT7 and patients in whom Vyndaqel(R) is ineffective or inappropriate. Initial and periodic cardiac assessment is necessary, as cardiac impairment is inevitable and largely responsible for mortality. Symptomatic treatment is crucial to improve these patients' quality of life. Familial screening for carriers of the TTR gene mutation and regular clinical examination are essential to detect disease onset and to start specific therapy in a timely manner. Topics: Amyloid Neuropathies, Familial; Antibodies, Monoclonal; Benzoxazoles; Clinical Trials as Topic; Diflunisal; Disease Progression; Doxycycline; Drug Therapy, Combination; Genetic Therapy; Heart Failure; Heart Transplantation; Humans; Kidney Failure, Chronic; Kidney Transplantation; Liver Transplantation; Myocardium; Oligonucleotides, Antisense; Renal Dialysis; RNA Interference; Serum Amyloid P-Component; Taurochenodeoxycholic Acid | 2012 |
1 trial(s) available for taurochenodeoxycholic-acid and Amyloid-Neuropathies--Familial
Article | Year |
---|---|
Doxycycline plus tauroursodeoxycholic acid for transthyretin amyloidosis: a phase II study.
We designed a phase II, open-label study to evaluate the efficacy, tolerability, safety, and pharmacokinetics of orally doxycycline (100 mg BID) and tauroursodeoxycholic acid (TUDCA) (250 mg three times/day) administered continuously for 12 months. Primary endpoint is response rate defined as nonprogression of the neuropathy and of the cardiomyopathy. Since July 2010, we enrolled 20 patients. Seventeen patients have hereditary ATTR, two patients have senile systemic amyloidosis, and one is a domino recipient. Seven patients completed 12-month treatment, 10 completed 6-month treatment, two discontinued because of poor tolerability, and one is lost at follow-up. No serious adverse events were registered. No clinical progression of cardiac involvement was observed. The neuropathy (Neuropathy Impairment Score in the Lower Limbs [NIS-LL] and Kumamoto score) remained substantially stable over 1 year. These preliminary data indicate that the combination of Doxy-TUDCA stabilizes the disease for at least 1 year in the majority of patients with an acceptable toxicity profile. Topics: Adult; Aged; Amyloid Neuropathies, Familial; Doxycycline; Drug Administration Schedule; Female; Humans; Male; Middle Aged; Prealbumin; Taurochenodeoxycholic Acid; Treatment Outcome | 2012 |
3 other study(ies) available for taurochenodeoxycholic-acid and Amyloid-Neuropathies--Familial
Article | Year |
---|---|
Impairment of autophagy by TTR V30M aggregates: in vivo reversal by TUDCA and curcumin.
Transthyretin (TTR)-related amyloidoses are diseases characterized by extracellular deposition of amyloid fibrils and aggregates in tissues composed of insoluble misfolded TTR that becomes toxic. Previous studies have demonstrated the ability of small compounds in preventing and reversing TTR V30M deposition in transgenic mice gastrointestinal (GI) tract as well as lowering biomarkers associated with cellular stress and apoptotic mechanisms. In the present study we aimed to study TTR V30M aggregates effect in autophagy, a cellular mechanism crucial for cell survival that has been implicated in the development of several neurodegenerative diseases. We were able to demonstrate in cell culture that TTR V30M aggregates cause a partial impairment of the autophagic machinery as shown by p62 accumulation, whereas early steps of the autophagic flux remain unaffected as shown by autophagosome number evaluation and LC3 turnover assay. Our studies performed in TTR V30M transgenic animals demonstrated that tauroursodeoxycholic acid (TUDCA) and curcumin effectively reverse p62 accumulation in the GI tract pointing to the ability of both compounds to modulate autophagy additionally to mitigate apoptosis. Overall, our in vitro and in vivo studies establish an association between TTR V30M aggregates and autophagy impairment and suggest the use of autophagy modulators as an additional and alternative therapeutic approach for the treatment of TTR V30M-related amyloidosis. Topics: Amyloid Neuropathies, Familial; Animals; Autophagy; Curcumin; Disease Models, Animal; Female; Humans; Male; Mice; Mice, Transgenic; Mutation, Missense; Prealbumin; Protein Aggregates; Taurochenodeoxycholic Acid | 2016 |
Synergy of combined doxycycline/TUDCA treatment in lowering Transthyretin deposition and associated biomarkers: studies in FAP mouse models.
Familial Amyloidotic Polyneuropathy (FAP) is a disorder characterized by the extracellular deposition of fibrillar Transthyretin (TTR) amyloid, with a special involvement of the peripheral nerve. We had previously shown that doxycycline administered for 3 months at 40 mg/Kg/ml in the drinking water, was capable of removing TTR amyloid deposits present in stomachs of old TTR-V30M transgenic mice; the removal was accompanied by a decrease in extracellular matrix remodeling proteins that accompany fibrillar deposition, but not of non-fibrillar TTR deposition and/or markers associated with pre-fibrillar deposits. On the other hand, Tauroursodeoxycholic acid (TUDCA), a biliary acid, administrated to the same mouse model was shown to be effective at lowering deposited non-fibrillar TTR, as well as the levels of markers associated with pre-fibrillar TTR, but only at young ages. In the present work we evaluated different doxycycline administration schemes, including different periods of treatment, different dosages and different FAP TTR V30M animal models. Evaluation included CR staining, immunohistochemistry for TTR, metalloproteinase 9 (MMP-9) and serum amyloid P component (SAP). We determined that a minimum period of 15 days of treatment with a 8 mg/Kg/day dosage resulted in fibril removal. The possibility of intermittent treatments was also assessed and a maximum period of 15 days of suspension was determined to maintain tissues amyloid-free. Combined cycled doxycycline and TUDCA administration to mice with amyloid deposition, using two different concentrations of both drugs, was more effective than either individual doxycycline or TUDCA, in significantly lowering TTR deposition and associated tissue markers. The observed synergistic effect of doxycycline/TUDCA in the range of human tolerable quantities, in the transgenic TTR mice models prompts their application in FAP, particularly in the early stages of disease. Topics: Amyloid Neuropathies, Familial; Animals; Biglycan; Biomarkers; Blotting, Western; Chondroitin Sulfates; Disease Models, Animal; Dose-Response Relationship, Drug; Doxycycline; Drug Administration Schedule; Drug Synergism; Endoplasmic Reticulum Chaperone BiP; Extracellular Matrix Proteins; Heat-Shock Proteins; Immunohistochemistry; Matrix Metalloproteinase 9; Mice; Prealbumin; Proteoglycans; Stomach; Taurochenodeoxycholic Acid | 2010 |
Anti-apoptotic treatment reduces transthyretin deposition in a transgenic mouse model of Familial Amyloidotic Polyneuropathy.
Tauroursodeoxycholic acid (TUDCA) is a unique natural compound that acts as a potent anti-apoptotic and anti-oxidant agent, reducing cytotoxicity in several neurodegenerative diseases. Since oxidative stress, apoptosis and inflammation are associated with transthyretin (TTR) deposition in Familial Amyloidotic Polyneuropathy (FAP), we investigated the possible TUDCA therapeutical application in this disease. We show by semi-quantitative immunohistochemistry and western blotting that administration of TUDCA to a transgenic mouse model of FAP decreased apoptotic and oxidative biomarkers usually associated with TTR deposition, namely the ER stress markers BiP and eIF2alpha, the Fas death receptor and oxidation products such as 3-nitrotyrosine. Most important, TUDCA treatment significantly reduced TTR toxic aggregates in as much as 75%. Since TUDCA has no effect on TTR aggregation "in vitro", this finding points for the "in vivo" modulation of TTR aggregation by cellular responses, such as by oxidative stress, ER stress and apoptosis and prompts for the use of this safe drug in prophylactic and therapeutic measures in FAP. Topics: Amyloid Neuropathies, Familial; Animals; Apoptosis; Disease Models, Animal; Endoplasmic Reticulum; Endoplasmic Reticulum Chaperone BiP; fas Receptor; Gastrointestinal Tract; Heat-Shock Proteins; Humans; Immunohistochemistry; Methionine; Mice; Mice, Transgenic; Molecular Chaperones; Mutant Proteins; Mutation; Oxidation-Reduction; Prealbumin; Protein Structure, Quaternary; Taurochenodeoxycholic Acid; Thermodynamics; Tyrosine | 2008 |