tasidotin has been researched along with Breast-Neoplasms* in 3 studies
3 other study(ies) available for tasidotin and Breast-Neoplasms
Article | Year |
---|---|
Intracellular activation and deactivation of tasidotin, an analog of dolastatin 15: correlation with cytotoxicity.
Tasidotin, an oncolytic drug in phase II clinical trials, is a peptide analog of the antimitotic depsipeptide dolastatin 15. In tasidotin, the carboxyl-terminal ester group of dolastatin 15 has been replaced by a carboxy-terminal tert-butyl amide. As expected from studies with cemadotin, [(3)H]tasidotin, with the radiolabel in the second proline residue, was hydrolyzed intracellularly, with formation of N,N-dimethylvalyl-valyl-N-methylvalyl-prolyl-proline (P5), a pentapeptide also present in dolastatin 15 and cemadotin. P5 was more active as an inhibitor of tubulin polymerization and less active as a cytotoxic agent than tasidotin, cemadotin, and dolastatin 15. [(3)H]P5 was not the end product of tasidotin metabolism. Large amounts of [(3)H]proline were formed in every cell line studied, with proline ultimately becoming the major radiolabeled product. The putative second product of the hydrolysis of P5, N,N-dimethylvalyl-valyl-N-methylvalyl-proline (P4), had little activity as either an antitubulin or cytotoxic agent. In seven suspension cell lines, the cytotoxicity of tasidotin correlated with total cell uptake of the compound and was probably affected negatively by the extent of degradation of P5 to proline and, presumably, P4. The intracellular enzyme prolyl oligopeptidase probably degrades tasidotin to P5. When CCRF-CEM human leukemia cells were treated with N-benzyloxycarbonylprolylprolinal (BCPP), an inhibitor of prolyl oligopeptidase, there was a 30-fold increase in the IC(50) of tasidotin and a marked increase in intracellular [(3)H]tasidotin. BCPP also caused a 4-fold increase in the IC(50) of P5, so the enzyme probably does not convert P5 to P4. Inhibiting degradation of P5 should have led to a decrease in the IC(50) obtained for P5 in the presence of BCPP. Topics: Antineoplastic Agents; Breast Neoplasms; Burkitt Lymphoma; Cell Culture Techniques; Cell Line, Tumor; Cell Proliferation; Depsipeptides; Dose-Response Relationship, Drug; Female; Humans; Inhibitory Concentration 50; Oligopeptides; Time Factors | 2009 |
Bone marrow CFU-GM and human tumor xenograft efficacy of three tubulin binding agents.
The dynamic instability of microtubules in cells is one of the key targets of anticancer therapeutics. Microtubule-disrupting agents such as vinca alkaloids and microtubule-stabilizing agents such as taxanes are important antitumor agents. The bone marrow toxicity and human tumor xenograft activity of three tubulin-binding compounds, vincristine, paclitaxel, and tasidotin were compared.. Mouse and human bone marrow were subjected to colony-forming (CFU-GM) assays over a 5-log concentration range in culture. In vivo, a range of tasidotin doses was compared with vincristine, paclitaxel, and docetaxel for efficacy in several human tumor xenografts.. The IC(90) concentrations for vincristine and paclitaxel for mouse CFU-GM were 30 and 27 nM, and for human CFU-GM were 3 and 9 nM, giving mouse to human differentials of ten- and threefold. Tasidotin produced IC(90)s of >300 nM in mouse and 65 nM in human CFU-GM, thus a >4.6-fold differential between species. In vivo, tasidotin resulted in a dose-dependent increase in tumor growth delay in the RL lymphoma, the RPMI 8226 multiple myeloma, and MX-1 breast carcinoma models. Vincristine and tasidotin were also very effective against these tumors. The PC-3 prostate carcinoma was very responsive to full-dose paclitaxel and docetaxel while tasidotin generated a dose dependent effect.. Bringing together bone marrow toxicity data, pharmacokinetic parameters, and human tumor xenograft efficacy provides valuable information for the translation of preclinical findings to the clinic. Topics: Animals; Antineoplastic Agents, Phytogenic; Body Weight; Bone Marrow Cells; Breast Neoplasms; Disease Progression; Female; Humans; Lymphoma; Male; Mice; Mice, Inbred BALB C; Multiple Myeloma; Oligopeptides; Paclitaxel; Prostatic Neoplasms; Tubulin; Tumor Stem Cell Assay; Vincristine; Xenograft Model Antitumor Assays | 2009 |
Mechanism of action of the microtubule-targeted antimitotic depsipeptide tasidotin (formerly ILX651) and its major metabolite tasidotin C-carboxylate.
Tasidotin (ILX-651), an orally active synthetic microtubule-targeted derivative of the marine depsipeptide dolastatin-15, is currently undergoing clinical evaluation for cancer treatment. Tasidotin inhibited proliferation of MCF7/GFP breast cancer cells with an IC(50) of 63 nmol/L and inhibited mitosis with an IC(50) of 72 nmol/L in the absence of detectable effects on spindle microtubule polymer mass. Tasidotin inhibited the polymerization of purified tubulin into microtubules weakly (IC(50) approximately 30 micromol/L). However, it strongly suppressed the dynamic instability behavior of the microtubules at their plus ends at concentrations approximately 5 to 10 times below those required to inhibit polymerization. Its major actions were to reduce the shortening rate, the switching frequency from growth to shortening (catastrophe frequency), and the fraction of time the microtubules grew. In contrast with all other microtubule-targeted drugs thus far examined that can inhibit polymerization, tasidotin did not inhibit the growth rate. In contrast to stabilizing plus ends, tasidotin enhanced microtubule dynamic instability at minus ends, increasing the shortening length, the fraction of time the microtubules shortened, and the catastrophe frequency and reducing the rescue frequency. Tasidotin C-carboxylate, the major intracellular metabolite of tasidotin, altered dynamic instability of purified microtubules in a qualitatively similar manner to tasidotin but was 10 to 30 times more potent. The results suggest that the principal mechanism by which tasidotin inhibits cell proliferation is by suppressing spindle microtubule dynamics. Tasidotin may be a relatively weak prodrug for the functionally active tasidotin C-carboxylate. Topics: Animals; Breast Neoplasms; Carboxylic Acids; Cattle; Cell Growth Processes; Cell Line, Tumor; Humans; Microtubules; Mitosis; Oligopeptides; Prodrugs | 2007 |