tas-116 has been researched along with Neoplasms* in 2 studies
1 review(s) available for tas-116 and Neoplasms
Article | Year |
---|---|
Heat Shock Protein 90 Inhibitors: An Update on Achievements, Challenges, and Future Directions.
Hsp90 is one of the most important chaperones involved in regulating the maturation of more than 300 client proteins, many of which are closely associated with refractory diseases, including cancer, neurodegenerative diseases, and viral infections. Clinical Hsp90 inhibitors bind to the ATP pocket in the N-terminal domain of Hsp90 and subsequently suppress the ATPase activity of Hsp90. Recently, with the increased understanding of the discrepancies in the isoforms of Hsp90 and the modes of Hsp90-co-chaperone-client complex interactions, some new strategies for Hsp90 inhibition have emerged. Novel Hsp90 inhibitors that offer selective suppression of Hsp90 isoforms or specific disruption of Hsp90-co-chaperone protein-protein interactions are expected to show with satisfactory efficacy and safety profiles. This review summarizes the recent progress in Hsp90 inhibitors. Additionally, Hsp90 inhibitory strategies are emphasized in this review. Topics: Animals; Antineoplastic Agents; Autoimmune Diseases; Benzoquinones; Forecasting; HSP90 Heat-Shock Proteins; Humans; Immunosuppressive Agents; Lactams, Macrocyclic; Molecular Chaperones; Neoplasms; Protein Binding; Protein Structure, Secondary; Protein Structure, Tertiary | 2020 |
1 other study(ies) available for tas-116 and Neoplasms
Article | Year |
---|---|
Discovery of 3-Ethyl-4-(3-isopropyl-4-(4-(1-methyl-1 H-pyrazol-4-yl)-1 H-imidazol-1-yl)-1 H-pyrazolo[3,4- b]pyridin-1-yl)benzamide (TAS-116) as a Potent, Selective, and Orally Available HSP90 Inhibitor.
The molecular chaperone heat shock protein 90 (HSP90) is a promising target for cancer therapy, as it assists in the stabilization of cancer-related proteins, promoting cancer cell growth, and survival. A novel series of HSP90 inhibitors were discovered by structure-activity relationship (SAR)-based optimization of an initial hit compound 11a having a 4-(4-(quinolin-3-yl)-1 H-indol-1-yl)benzamide structure. The pyrazolo[3,4- b]pyridine derivative, 16e (TAS-116), is a selective inhibitor of HSP90α and HSP90β among the HSP90 family proteins and exhibits oral availability in mice. The X-ray cocrystal structure of the 16e analogue 16d demonstrated a unique binding mode at the N-terminal ATP binding site. Oral administration of 16e demonstrated potent antitumor effects in an NCI-H1975 xenograft mouse model without significant body weight loss. Topics: Administration, Oral; Animals; Antineoplastic Agents; Benzamides; Binding Sites; Cell Line, Tumor; Crystallography, X-Ray; Drug Design; Drug Screening Assays, Antitumor; HSP90 Heat-Shock Proteins; Humans; Mice; Mice, Nude; Molecular Conformation; Molecular Dynamics Simulation; Neoplasms; Pyrazoles; Quinolines; Recombinant Proteins; Solubility; Structure-Activity Relationship | 2019 |