tas-115 has been researched along with Adenocarcinoma* in 1 studies
1 other study(ies) available for tas-115 and Adenocarcinoma
Article | Year |
---|---|
Triple inhibition of EGFR, Met, and VEGF suppresses regrowth of HGF-triggered, erlotinib-resistant lung cancer harboring an EGFR mutation.
Met activation by gene amplification and its ligand, hepatocyte growth factor (HGF), imparts resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in EGFR-mutant lung cancer. We recently reported that Met activation by HGF stimulates the production of vascular endothelial growth factor (VEGF) and facilitates angiogenesis, which indicates that HGF induces EGFR-TKI resistance and angiogenesis. This study aimed to determine the effect of triple inhibition of EGFR, Met, and angiogenesis on HGF-triggered EGFR-TKI resistance in EGFR-mutant lung cancer.. Three clinically approved drugs, erlotinib (an EGFR inhibitor), crizotinib (an inhibitor of anaplastic lymphoma kinase and Met), and bevacizumab (anti-VEGF antibody), and TAS-115, a novel dual TKI for Met and VEGF receptor 2, were used in this study. EGFR-mutant lung cancer cell lines PC-9, HCC827, and HGF-gene-transfected PC-9 (PC-9/HGF) cells were examined.. Crizotinib and TAS-115 inhibited Met phosphorylation and reversed erlotinib resistance and VEGF production triggered by HGF in PC-9 and HCC827 cells in vitro. Bevacizumab and TAS-115 inhibited angiogenesis in PC-9/HGF tumors in vivo. Moreover, the triplet erlotinib, crizotinib, and bevacizumab, or the doublet erlotinib and TAS-115 successfully inhibited PC-9/HGF tumor growth and delayed tumor regrowth associated with sustained tumor vasculature inhibition even after cessation of the treatment.. These results suggest that triple inhibition of EGFR, HGF/Met, and VEGF/VEGF receptor 2, by either a triplet of clinical drugs or TAS-115 combined with erlotinib, may be useful for controlling progression of EGFR-mutant lung cancer by reversing EGFR-TKI resistance and for inhibiting angiogenesis. Topics: Adenocarcinoma; Animals; Antibodies, Monoclonal, Humanized; Antineoplastic Combined Chemotherapy Protocols; Bevacizumab; Cell Line, Tumor; Cell Proliferation; Crizotinib; Drug Resistance, Neoplasm; ErbB Receptors; Erlotinib Hydrochloride; Hepatocyte Growth Factor; Humans; Lung Neoplasms; Male; Mice; Mice, Nude; Neovascularization, Pathologic; Phosphorylation; Proto-Oncogene Proteins c-met; Pyrazoles; Pyridines; Quinazolines; Quinolines; Thiourea; Vascular Endothelial Growth Factor A | 2014 |