tanshinone-ii-a-sodium-sulfonate and Stroke

tanshinone-ii-a-sodium-sulfonate has been researched along with Stroke* in 3 studies

Trials

1 trial(s) available for tanshinone-ii-a-sodium-sulfonate and Stroke

ArticleYear
Sodium Tanshinone IIA Sulfonate Enhances Effectiveness Rt-PA Treatment in Acute Ischemic Stroke Patients Associated with Ameliorating Blood-Brain Barrier Damage.
    Translational stroke research, 2017, Volume: 8, Issue:4

    Treatment with sodium tanshinone IIA sulfonate (STS) may ameliorate blood-brain barrier (BBB) damage in acute ischemic stroke patients receiving recombinant tissue plasminogen activator (rt-PA) thrombolysis and improve stroke patients' outcome. This randomized, single-center, placebo-controlled clinical trial investigated the potential effects and underlying mechanisms of STS. Forty-two acute ischemic stroke patients receiving intravenous rt-PA thrombolysis were randomized to intravenous administration either with STS (60 mg/day) (n = 21) or with equivalent volume of saline as a placebo (n = 21) after randomization for 10 days. Clinical outcomes, computer tomography perfusion (CTP) imaging with permeability-surface area product (PS) maps and serum levels of BBB damage biomarkers, were compared between the two groups. The percentage of patients with excellent functional outcome indicated by a 90-day mRS ≤1 was significantly higher in the STS group than in the placebo group (p = 0.028). For patients with CTP imaging (n = 30), PS in the ipsilateral lesion (p = 0.034) and relative PS (p = 0.013) were significantly lower in the STS group than that in placebo. STS-treated patients also had lower levels of matrix metalloproteinase (MMP)-9 (p = 0.036) and claudin-5 (p = 0.026), but higher levels of tissue inhibitor of metalloproteinase (TIMP)-1 (p = 0.040) than those in the placebo group. Post-stroke STS treatment could improve neurologic functional outcomes for acute ischemic stroke patients following rt-PA treatment by reducing BBB leakage and damage, which might be mechanistically associated with MMP-9 inhibition.

    Topics: Adolescent; Adult; Aged; Aged, 80 and over; Blood-Brain Barrier; Brain Ischemia; Claudin-5; Double-Blind Method; Drug Synergism; Female; Fibrinolytic Agents; Humans; Male; Matrix Metalloproteinase 1; Matrix Metalloproteinase 9; Middle Aged; Phenanthrenes; Prospective Studies; Stroke; Tissue Inhibitor of Metalloproteinase-1; Tissue Plasminogen Activator; Treatment Outcome; Young Adult; Zonula Occludens-1 Protein

2017

Other Studies

2 other study(ies) available for tanshinone-ii-a-sodium-sulfonate and Stroke

ArticleYear
Sodium Tanshinone IIA Sulfonate Ameliorates Oxygen-glucose Deprivation/Reoxygenation-induced Neuronal Injury via Protection of Mitochondria and Promotion of Autophagy.
    Neurochemical research, 2023, Volume: 48, Issue:11

    Sodium tanshinone IIA sulfonate (STS) has shown significant clinical therapeutic effects in cerebral ischemic stroke (CIS), but the molecular mechanisms of neuroprotection remain partially known. The purpose of this study was to explore whether STS plays a protective role in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neuronal injury by regulating microglia autophagy and inflammatory activity. Co-cultured microglia and neurons were subjected to OGD/R injury, an in vitro model of ischemia/reperfusion (I/R) injury with or without STS treatment. Expression of protein phosphatase 2 A (PP2A) and autophagy-associated proteins Beclin 1, autophagy related 5 (ATG5), and p62 in microglia was determined by Western blotting. Autophagic flux in microglia was observed with confocal laser scanning microscopy. Neuronal apoptosis was measured by flow cytometric and TUNEL assays. Neuronal mitochondrial function was determined via assessments of reactive oxygen species generation and mitochondrial membrane potential integrity. STS treatment markedly induced PP2A expression in microglia. Forced overexpression of PP2A increased levels of Beclin 1 and ATG5, decreased the p62 protein level, and induced autophagic flux. Silencing of PP2A or administration of 3-methyladenine inhibited autophagy and decreased the production of anti-inflammatory factors (IL-10, TGF-β and BDNF) and induced the release of proinflammatory cytokines (IL-1β, IL-2 and TNF-α) by STS-treated microglia, thereby inducing mitochondrial dysfunction and apoptosis of STS-treated neurons. STS exerts protection against neuron injury, and the PP2A gene plays a crucial role in improving mitochondrial function and inhibiting neuronal apoptosis by regulating autophagy and inflammation in microglia.

    Topics: Apoptosis; Autophagy; Beclin-1; Glucose; Humans; Mitochondria; Neurons; Oxygen; Reperfusion Injury; Signal Transduction; Stroke

2023
The crosstalk signals of Sodium Tanshinone ⅡA Sulfonate in rats with cerebral ischemic stroke: Insights from proteomics.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2022, Volume: 151

    Stroke could cause long-term disability, even mortality around the world. Recently, Sodium tanshinone IIA sulfonate (STS), identified from Salvia miltiorrhiza Bunge and was found to have unique efficiency in clinical practice as a potential therapeutic agent for ischemic cerebral infarction. However, systematic investigation about the biological mechanism is still lacking. Herein, we utilized high-throughput proteomics approach to identify the underlying targets for the treatment of STS in stroke.. We investigated the effect of STS on stroke outcomes on rat model of the Middle Cerebral Artery Occlusion and Reperfusion (MCAO/R), assessing by Z-Longa score, infarct volume and HE staining. Pharmacoproteomic profiling of ischemic penumbra in cortical (IPC) was performed using DIA-based label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique. Bioinformatics analysis was processed for further investigation. The expression of core proteins was semi-quantified by DIA, and the major protein correlating with stroke was examined using parallel reaction monitoring (PRM).. Rats in the MCAO/R group showed neurological function deterioration, which was improved by STS. There were 423 differentially expressed proteins (DEPs) in IPC being detected and quantified in both the sham group and the MCAO/R group. Meanwhile, 285 proteins were significantly changed in the STS treated group, compared to the MCAO/R model. Protein-protein interaction (PPI) network, pathway and biological function enrichment were processed for the DEPs across each two groups, the results of which were integrated for analysis. Alb, mTOR, Dync1h1, Stxbp1, Cltc, and Sptan1 were contained as the core proteins. Altered molecules were discovered to be enriched in 18 signal pathways such as phosphatidylinositol signaling system, PI3K/AKT signal pathway and HIF-1 signal pathway. The results also showed the correlation with sleep disturbances and depression post-stroke.. We concluded that STS could prevent penumbra from progressively ongoing damage and improve neurological deficits in MCAO/R model rats. The intersected pathways and protein networks predicted by proteomics might provide much more detailed information for the therapeutic mechanisms of STS in the treatment of CIS.

    Topics: Animals; Brain Ischemia; Chromatography, Liquid; Infarction, Middle Cerebral Artery; Ischemic Stroke; Phenanthrenes; Phosphatidylinositol 3-Kinases; Proteomics; Rats; Rats, Sprague-Dawley; Stroke; Tandem Mass Spectrometry

2022