tanshinone-ii-a-sodium-sulfonate has been researched along with Sepsis* in 5 studies
5 other study(ies) available for tanshinone-ii-a-sodium-sulfonate and Sepsis
Article | Year |
---|---|
Sodium tanshinone IIA sulfonate attenuates sepsis-associated brain injury via inhibiting NOD-like receptor 3/caspase-1/gasdermin D-mediated pyroptosis.
Sodium tanshinone IIA sulfonate (STS) has been reported to protect organ function in sepsis. However, the attenuation of sepsis-associated brain injury and its underlying mechanisms by STS has not been established.. C57BL/6 mice were used to establish the cecal ligation perforation (CLP) model, and STS was injected intraperitoneally 30 min before the surgery. The BV2 cells were stimulated by lipopolysaccharide after being pre-treated with STS for 4 h. The STS protective effects against brain injury and in vivo anti-neuroinflammatory effects were investigated using the 48-hour survival rate and body weight changes, brain water content, histopathological staining, immunohistochemistry, ELISA, RT-qPCR, and transmission electron microscopy. The pro-inflammatory cytokines of BV2 cells were detected by ELISA and RT-qPCR. At last, the levels of NOD-like receptor 3 (NLRP3) inflammasome activation and pyroptosis in brain tissues of the CLP model and BV2 cells were detected using western blotting.. STS increased the survival rate, decreased brain water content, and improved brain pathological damage in the CLP models. STS increased the expressions of tight junction proteins ZO-1 and Claudin5 while reducing the expressions of tumor necrosis factor α (TNF-α), interleukin-1β(IL-1β), and interleukin-18 (IL-18) in the brain tissues of the CLP models. Meanwhile, STS inhibited microglial activation and M1-type polarization in vitro and in vivo. The NLRP3/caspase-1/ gasdermin D (GSDMD)-mediated pyroptosis was activated in the brain tissues of the CLP models and lipopolysaccharide (LPS)-treated BV2 cells, which was significantly inhibited by STS.. The activation of NLRP3/caspase-1/GSDMD-mediated pyroptosis and subsequent secretion of proinflammatory cytokines may be the underlying mechanisms of STS against sepsis-associated brain injury and neuroinflammatory response. Topics: Animals; Brain Injuries; Caspase 1; Cytokines; Gasdermins; Inflammasomes; Lipopolysaccharides; Mice; Mice, Inbred C57BL; NLR Family, Pyrin Domain-Containing 3 Protein; NLR Proteins; Pyroptosis; Sepsis | 2023 |
Sodium tanshinone IIA sulfonate attenuates cardiac dysfunction and improves survival of rats with cecal ligation and puncture-induced sepsis.
Cardiac dysfunction, a common consequence of sepsis, is the major contribution to morbidity and mortality in patients. Sodium tanshinone IIA sulfonate (STS) is a water-soluble derivative of Tanshinone IIA (TA), a main active component of Salvia miltiorrhiza Bunge, which has been widely used in China for the treatment of cardiovascular and cerebral system diseases. In the present study, the effect of STS on sepsis-induced cardiac dysfunction was investigated and its effect on survival rate of rats with sepsis was also evaluated. STS treatment could significantly decrease the serum levels of C-reactive protein (CRP), procalcitonin (PCT), cardiac troponin I (cTn-I), cardiac troponin T (cTn-T), and brain natriuretic peptide (BNP) in cecal ligation and puncture (CLP)-induced) septic rats and improve left ventricular function, particularly at 48 and 72 h after CLP. As the pathogenesis of septic myocardial dysfunction is attributable to dysregulated systemic inflammatory responses, several key cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10) and high mobility group protein B1 (HMGB1), were detected to reveal the possible mechanism of attenuation of septic myocardial dysfunction after being treated by STS. Our study showed that STS, especially at a high dose (15 mg·kg Topics: Animals; C-Reactive Protein; Cecum; Drugs, Chinese Herbal; Female; Heart; Humans; Interleukin-6; Ligation; Male; Myocardium; Phenanthrenes; Punctures; Rats; Salvia miltiorrhiza; Sepsis; Troponin T; Tumor Necrosis Factor-alpha | 2018 |
Sodium tanshinone II A sulfonate ameliorates microcirculatory disturbance of small intestine by attenuating the production of reactie oxygen species in rats with sepsis.
To examine whether sodium tanshinone II A sulfonate (STS), the main effective component of Salvia miltiorrhiza is effective in relieving the microcirculatory disturbance of small intestine by suppressing the production of reactive oxygen species (ROS) in rats with sepsis.. A rat model of sepsis was induced by cecal ligation and puncture (CLP). Rats (n =40) were randomly divided into 4 groups: sham-operated group (sham, n =10), sepsis group (CLP, n =10), STS treatment group (STS, n =10) and ROS scavenger dimethylthiourea (DMTU, n =10) group. Animals in the STS group were injected with STS (1 mg/kg) for 10 min through the right external jugular vein after the CLP operation, and animals in the CLP group were given the same volume of normal saline after the CLP operation. Animals in the DMTU group were intraperitoneally injected with 5 mL/kg of 20% DMTU 1 h before CLP. The histopathologic changes in the intestinal tissues and changes of mesenteric microcirculation were observed. The levels of ROS in intestinal tissues from each group were qualitatively evaluated using a fluorescent microscope. The expressions of apoptosis signal-regulating kinase (ASK1), phosphorylated ASK1 (phospho-ASK1), p38 mitogen-activated protein kinases (p38 MAPK), phosphorylated p38 MAPK (phospho-p38 MAPK) and tissue factor (TF) were determined by Western blotting.. It was shown that there were obvious microcirculatory disturbance (P <0.05) and tissue injuries in intestinal tissues after CLP operation. The levels of ROS production, phospho-ASK1, phospho-p38 MAPK and TF were increased. Both STS and DMTU suppressed ROS, phospho-ASK1, phospho-p38 MAPK and TF production, and ameliorated the microcirculatory disturbance and tissues injury (P <0.01).. STS can ameliorate the microcirculatory disturbance of the small intestine by attenuating the production of ROS in rats with sepsis. Topics: Animals; Intestine, Small; Male; MAP Kinase Kinase Kinase 5; Microcirculation; p38 Mitogen-Activated Protein Kinases; Phenanthrenes; Phosphorylation; Rats, Wistar; Reactive Oxygen Species; Sepsis; Thromboplastin | 2016 |
Protective effect of sodium tanshinone IIA sulfonate on injury of small intestine in rats with sepsis and its mechanism.
To explore the protective effect of sodium tanshinone IIA sulfonate (STS) on small: intestine injury in rats with sepsis and its possible mechanism.. According to a random number table, 24 Tats were randomly divided into 3 groups: sham operation group (sham group), sepsis model group (model group) and STS treatment group (STS group), with 8 Tats in each group. A rat model of sepsis was induced by cecal ligation and puncture (CLP) for 5 h. STS (1 mg/kg) was slowly injected through the right external jugular vein after CLP. The histopathologic changes in the intestine tissue were observed under a light microscope, and the intestinal epithelial cell apoptosis was evaluated by terminal deoxynucleoddyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) method. The expressions of Bcl-2, Bax and nuclear factor κB (NF-κB) p65 in the intestinal tissue was determined by Western blot. The levels of tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) in the intestinal tissue were determined using enzyme-linked immuno-sorbent assay (ELISA).. Obvious injuries were observed in the intestinal tissue in the CLP group compared with the sham group. The expression of NF-κB p65 and the levels of TNF-α and IL-6 were up-regulated after CLP, the apoptosis of intestinal epithelial cells was increased after CLP, and the ratio of Bcl-2 to Bax was decreased. STS post-treatment could attenuate the injury on the intestinal tissue induced by CLP, decrease the apoptosis of intestinal treatment epithelial cells and the levels of NF-κB p65, TNF-α and IL-6, and increase the ratio of Bcl-2 to Bax.. STS can protect the small intestine in rats with sepsis, and the mechanism may be associated with the inhibition of intestinal epithelial apoptosis and the reduction of activation of inflammatory cytokines. Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Interleukin-6; Intestine, Small; Male; Phenanthrenes; Protective Agents; Rats; Rats, Wistar; Sepsis; Transcription Factor RelA; Tumor Necrosis Factor-alpha | 2012 |
Protective effect and mechanism of sodium tanshinone II A sulfonate on microcirculatory disturbance of small intestine in rats with sepsis.
To explore the protective effect of sodium tanshinone IIA sulfonate (STS) on microcirculatory disturbance of small intestine in rats with sepsis, and the possible mechanism, a rat model of sepsis was induced by cecal ligation and puncture (CLP). Rats were randomly divided into 3 groups: sham operated group (S), sepsis group (CLP) and STS treatment group (STS). STS (1 mg/kg) was slowly injected through the right external jugular vein after CLP. The histopathologic changes in the intestinal tissue and changes of mesenteric microcirculation were observed. The levels of tumor necrosis factor-α (TNF-α) in the intestinal tissue were determined by using enzyme-linked immunoabsorbent assay (ELISA). The expression of intercellular adhesion molecule-1 (ICAM-1) in the intestinal tissue was detected by using immunohistochemisty and Western blot, that of nuclear factor κB (NF-κB) and tissue factor (TF) by using Western blot, and the levels of NF-κB mRNA expression by using RT-PCR respectively. The microcirculatory disturbance of the intestine was aggravated after CLP. The injury of the intestinal tissues was obviously aggravated in CLP group as compared with S group. The expression levels of NF-κB p65, ICAM-1, TF and TNF-α were upregulaed after CLP (P<0.01). STS post-treatment could ameliorate the microcirculatory disturbance, attenuate the injury of the intestinal tissues induced by CLP, and decrease the levels of NF-κB, ICAM-1, TF and TNF-α (P<0.01). It is suggested that STS can ameliorate the microcirculatory disturbance of the small intestine in rats with sepsis, and the mechanism may be associated with the inhibition of inflammatory responses and amelioration of coagulation abnormality. Topics: Animals; Intestine, Small; Male; Microcirculation; Phenanthrenes; Rats; Rats, Wistar; Sepsis | 2011 |