tanshinone-ii-a-sodium-sulfonate and Inflammation

tanshinone-ii-a-sodium-sulfonate has been researched along with Inflammation* in 8 studies

Other Studies

8 other study(ies) available for tanshinone-ii-a-sodium-sulfonate and Inflammation

ArticleYear
Tanshinone IIA sodium sulfonate attenuates inflammation by upregulating circ-Sirt1 and inhibiting the entry of NF-κB into the nucleus.
    European journal of pharmacology, 2022, Jan-05, Volume: 914

    Inflammation is a biological process that exists in a large number of diseases. NF-κB has been proven to play a pivotal role in the development of inflammation. New drugs aimed at inhibiting the expression of NF-κB have gained attention from researchers. Sirt1 has an anti-inflammatory function, and the circRNA encoded by the Sirt1 gene may also play roles in the anti-inflammatory reaction of Sirt1. In the present study, LPS-treated RAW264.7 cells were used as an inflammatory cell model, and tanshinone IIA sodium sulfonate (TSS) was used as a therapeutic drug. We found that TSS downregulated LPS-induced TNF-α and IL-1β expression nearly threefold. LPS reduced Circ-sirt1 mRNA expression by one-third, while TSS started this phenomenon. In addition, overexpression/knockdown of Circ-sirt1 neutralized the function of TSS by regulating the translocation of NF-κB. Thus, we proved that TSS has an anti-inflammatory function by upregulating circ-Sirt1 and subsequently inhibiting the translocation of NF-κB. An in vivo experiment was also performed to confirm the protective function of TSS on inflammation. These results indicated that TSS is a potential treatment for inflammation.

    Topics: Animals; Anti-Inflammatory Agents; Drugs, Chinese Herbal; Gene Expression Regulation; Inflammation; Mice; NF-kappa B; Phenanthrenes; RAW 264.7 Cells; RNA, Circular; Salvia miltiorrhiza; Sirtuin 1; Tumor Necrosis Factor-alpha; Up-Regulation

2022
Sodium Tanshinone IIA Sulfonate Improves Adverse Ventricular Remodeling Post-MI by Reducing Myocardial Necrosis, Modulating Inflammation, and Promoting Angiogenesis.
    Current pharmaceutical design, 2022, Volume: 28, Issue:9

    Myocardial infarction (MI) leads to pathological cardiac remodeling and heart failure. Sodium tanshinone IIA sulfonate (STS) shows to possess therapeutic potential. The present study aimed to explore the potential role of STS in ventricular remodeling post-MI.. Mice were randomly divided into sham, MI + normal saline (NS) and MI + STS (20.8 mg/kg/day intraperitoneally) groups. MI was established following left anterior descending artery ligation. Cardiac function was evaluated using echocardiography. Scar size and myocardial fibrosis-associated markers were detected using Masson's trichrome staining and western blot analysis (WB). Necrosis and inflammation were assessed using H&E staining, lactate dehydrogenase (LDH) detection, ELISA, immunohistochemical staining, and WB. Furthermore, angiogenesis markers and associated proteins were detected using immunohistochemical staining and WB.. Mice treated with STS exhibited significant improvements in cardiac function, smaller scar size, and low expression levels of α-smooth muscle actin and collagen I and III at 28 days following surgery, compared with the NS-treated group. Moreover, treatment with STS reduced eosinophil necrosis, the infiltration of inflammatory cells, plasma levels of LDH, high mobility group protein B1, interleukin-1β and tumor necrosis factor- α, and protein expression of these cytokines at 3 days. Macrophage infiltration was also decreased in the STS group in the early phase. Additionally, CD31+ vascular density, protein levels of hypoxia-inducible factor- 1α, and vascular endothelial growth factor were elevated in the STS-treated mice at 28 days.. STS improved pathological remodeling post-MI, and the associated therapeutic effects may be a result of a decrease in myocardial necrosis, modulation of inflammation, and an increase in angiogenesis.

    Topics: Animals; Cicatrix; Disease Models, Animal; Humans; Inflammation; Mice; Myocardial Infarction; Myocardium; Neovascularization, Pathologic; Phenanthrenes; Vascular Endothelial Growth Factor A; Ventricular Remodeling

2022
Sodium Tanshinone IIA Sulfonate Protects Against Cerebral Ischemia-reperfusion Injury by Inhibiting Autophagy and Inflammation.
    Neuroscience, 2020, 08-10, Volume: 441

    Sodium tanshinone IIA sulfonate (STS) can protect against brain damage induced by stroke. However, the neural protection mechanism of STS remains unclear. We investigated whether STS performs its protective function by suppressing autophagy and inflammatory activity during brain injury. We established a transient middle cerebral artery occlusion and reperfusion (MCAO/R) model by blocking the left middle cerebral artery with a thread inserted through the internal carotid artery for 1 h, followed by reperfusion for 48 h either with or without STS and the autophagy inhibitor 3-methyladenine (3-MA). Neuroprotective effects were determined by evaluating infarction, brain edema, and neurological deficits. The numbers of microglia-derived macrophages, monocyte-derived microglia, T cells, and B cells in the brains were measured, based on the surface marker analyses of CD45, CD11b, B220, CD3, and CD4 using fluorescence-assisted cell sorting. STS (10, 20, 40 mg/kg) was able to significantly reduce infarct volumes, improve neurological deficits, and reduce brain water contents. STS treatment reduced neuroinflammation, as assessed by the infiltration of macrophages and neutrophils, corresponding with reduced numbers of macrophages, T cells, and B cells in ischemia/reperfusion (I/R) brains. In addition, STS treatment also attenuated the upregulation of autophagy associated proteins, such as LC3-II, Beclin-1 and Sirt 6, which was induced by MCAO. These results demonstrated that STS can provide remarkable protection against ischemic stroke, possibly via the inhibition of autophagy and inflammatory activity.

    Topics: Animals; Autophagy; Brain Ischemia; Disease Models, Animal; Infarction, Middle Cerebral Artery; Inflammation; Neuroprotective Agents; Phenanthrenes; Rats; Rats, Sprague-Dawley; Reperfusion Injury

2020
Sodium tanshinone IIA sulfonate ameliorates hepatic steatosis by inhibiting lipogenesis and inflammation.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2019, Volume: 111

    Non-alcoholic fatty liver disease (NAFLD) is becoming an epidemic disease in adults and children worldwide. Importantly, there are currently no approved treatments available for NAFLD. This study aims to investigate the potential applications of sodium tanshinone IIA sulfonate (STS) on improving the NAFLD condition using both in vitro and in vivo approaches. The results showed that STS markedly inhibited lipid accumulation in oleic acid (OA) and palmitic acid (PA) treated HepG2 and primary immortalized human hepatic (PIH) cells. STS suppressed lipogenesis by inhibiting expression of sterol regulatory element binding transcription factor 1 (SREBF1), fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD). In addition, STS reduced inflammation in cells treated with OA-PA, shown by decreased transcriptional levels of tumor necrosis factor (TNF), transforming growth factor beta 1 (TGFB1) and interleukin 1 beta (IL1B). Consistently, protective effects on hepatic steatosis in db/db mice were observed after STS administration, demonstrated by decreased lipid accumulation in mouse hepatocytes. This protective effect might be associated with STS induced activation of sirtuin 1 (SIRT1)/protein kinase AMP-activated catalytic subunit alpha 1 (PRKAA1) pathways. Our findings suggest a potential therapeutic role for STS in the treatment of NAFLD.

    Topics: Animals; Dose-Response Relationship, Drug; Hep G2 Cells; Humans; Inflammation; Lipogenesis; Male; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Phenanthrenes; Random Allocation

2019
Sodium tanshinone IIA sulfonate prevents lipopolysaccharide-induced inflammation via suppressing nuclear factor-κB signaling pathway in human umbilical vein endothelial cells.
    Canadian journal of physiology and pharmacology, 2018, Volume: 96, Issue:1

    Sodium tanshinone IIA sulfonate (STS), a water-soluble derivative of tanshinone IIA, has been demonstrated to have potent anti-inflammatory properties. However, the protective effects of STS on lipopolysaccharide (LPS)-induced inflammation in endothelial cells remain to be elucidated. In the present study, human umbilical vein endothelial cells (HUVECs) were used to explore the effects of STS on LPS-induced inflammation and the molecular mechanism involved. HUVECs were pretreated with STS for 2 h, followed by stimulation with LPS. Then expression and secretion of tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and the activation of nuclear factor-κB (NF-κB) were assessed. The results demonstrated that STS significantly decreased LPS-induced TNF-α and IL-1β protein expression in HUVECs. Similarly, the increased levels of TNF-α and IL-1β in cell supernatants stimulated by LPS were also significantly inhibited by STS. Furthermore, STS inhibited LPS-induced NF-κB p65 phosphorylation and nuclear translocation. All the results suggest that STS prevents LPS-induced inflammation through suppressing NF-κB signaling pathway in endothelial cells, indicating the potential utility of STS for the treatment of inflammatory diseases.

    Topics: Cell Survival; Human Umbilical Vein Endothelial Cells; Humans; Inflammation; Interleukin-1beta; Lipopolysaccharides; NF-kappa B; Nitriles; Phenanthrenes; Signal Transduction; Sulfones; Tumor Necrosis Factor-alpha

2018
Sodium tanshinone IIA sulfonate improves inflammation, aortic endothelial cell apoptosis, disseminated intravascular coagulation and multiple organ damage in a rat heat stroke model.
    Molecular medicine reports, 2017, Volume: 16, Issue:1

    The aim of the present study was to investigate the effects of sodium tanshinone IIA sulfonate (STS) on inflammatory responses, aortic endothelial cell apoptosis, disseminated intravascular coagulation (DIC) and multiple organ damage in an animal model of classic heat stroke (CHS). The rats in the heat stroke (HS) and STS‑treated heat stroke (STS‑HS) groups were placed into a pre‑warmed animal temperature controller (ATC) at 35˚C. The moment at which the rectal temperature reached 43.5˚C was considered as the time of onset of HS. In the HS groups, the rats were removed from the ATC and allowed to recover at 26˚C for 0, 2, 6 or 12 h. In the STS‑HS groups, the rats received femoral vein injections of 5‑40 mg/kg STS immediately following the onset of HS and were subsequently placed at a temperature of 26˚C to recover for 6 h. In the present study, the serum levels of tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β and IL‑6 were assessed using ELISA, and the numbers of apoptotic aortic endothelial cells were investigated using terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick‑end labeling combined with immunofluorescence. In the HS groups, the serum levels of TNF‑α, IL‑1β and IL‑6, as well as the numbers of apoptotic aortic endothelial cells were increased compared with the normothermic control group. Additionally, the plasma prothrombin time, activated partial thromboplastin time and D‑dimer level were significantly increased in the HS group compared with the normothermic control group following recovery for 6 h. By contrast, the platelet count was decreased in the HS group compared with the normothermic control group. The serum levels of creatinine, blood urea nitrogen, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and lactate dehydrogenase were increased and histopathological damage to multiple organs was observed in the HS group following recovery for 6 h. In the STS‑HS groups, cytokine levels and apoptotic aortic endothelial cell numbers were reduced compared with the HS group after 6 h recovery. STS (40 mg/kg) treatment additionally improved the serum levels of organ injury indicators and plasma indicators of coagulopathy, and prevented histopathological damage to multiple organs. These findings demonstrated that STS treatment may ameliorate multiple organ damage by attenuating inflammatory responses, aortic endothelial cell apoptosis and DIC in CHS. These results suggested that STS may hold potential a

    Topics: Animals; Apoptosis; Biomarkers; Cytokines; Disease Models, Animal; Disseminated Intravascular Coagulation; Endothelial Cells; Heat Stroke; Inflammation; Male; Phenanthrenes; Rats

2017
Tanshinone IIA Sodium sulfonate regulates antioxidant system, inflammation, and endothelial dysfunction in atherosclerosis by downregulation of CLIC1.
    European journal of pharmacology, 2017, Nov-15, Volume: 815

    Tanshinone IIA Sodium sulfonate (STS) is clinically used for treating cardiovascular diseases in Traditional Chinese Medicine due to its antioxidation and anti-inflammation activities. Intracellular chloride channel 1 (CLIC1) participates in the regulation of oxidative stress and inflammation. This study investigates whether CLIC1 mediates the cardioprotective effects of STS.. STS were used to treat atherosclerosis (AS) induced by feeding Apolipoprotein E-deficient (ApoE. STS treatment decreased atherosclerotic lesion area by 3.5 times (P = 0.001) in vivo. Meanwhile, STS reduced MDA production (13.6%, P = 0.008), increased SOD activity (113.6%, P = 0.008), decreased TNF-α (38.6%, P = 0.008) and IL-6 (43.0%, P = 0.03) levels, and downregulated the expression of CLIC1, ICAM-1, and VCAM-1 in the atherosclerotic mice. The dose-dependent anti-oxidative and anti-inflammatory effects of STS were further confirmed in vitro. Furthermore, CLIC1 depletion abolished the STS-mediated decrease of ROS and MDA production in HUVEC cells. Additionally, STS inhibited both CLIC1 membrane translocation and chloride ion concentration.. The anti-oxidant, and anti-inflammation properties of STS in preventing AS is mediated by its inhibition of CLIC1 expression and membrane translocation.

    Topics: Animals; Antioxidants; Atherosclerosis; Cell Membrane; Chloride Channels; Down-Regulation; Human Umbilical Vein Endothelial Cells; Humans; Inflammation; Male; Mice; Oxidative Stress; Phenanthrenes; Protein Transport

2017
Sodium tanshinone IIA sulfonate attenuates hemorrhagic shock-induced organ damages by nuclear factor-kappa B pathway.
    The Journal of surgical research, 2017, Volume: 209

    Trauma resulted hemorrhagic shock (HS) leads to increased oxidative stress and inflammatory responses, which contributes greatly to organ failure or dysfunction. Tanshinone IIA sulfonate (TSA), as an antioxidant, may potentially be used in fluid resuscitation to prevent HS-induced organ damages.. In this study, a rat HS model was constructed. HS rats received TSA or vehicle drug during resuscitation. Mean arterial pressure and factors associated with organ failure or dysfunction, oxidative stress, and inflammatory response were investigated to evaluate treatment responses. Expression of proteins in NF-кB pathway was evaluated to elucidate the mechanism of TSA in preventing HS-induced organ damage.. Although HS induced organ damage and upregulated oxidative stress and inflammatory response, TSA treatment ameliorated organ dysfunction, reduced oxidative stress, and suppressed inflammatory responses. We also showed that TSA treatment attenuated HS-induced activation in NF-кB pathway.. TSA can potentially serve as an antioxidant for ameliorating HS-induced organ failure or function. Its mechanism of action may be through inhibiting NF-кB pathway.

    Topics: Animals; Blood Pressure; Drug Evaluation, Preclinical; Drugs, Chinese Herbal; Inflammation; Male; Multiple Organ Failure; NF-kappa B; Oxidative Stress; Phenanthrenes; Phytotherapy; Rats, Wistar; Resuscitation; Shock, Hemorrhagic

2017