tanshinone-ii-a-sodium-sulfonate has been researched along with Disease-Models--Animal* in 15 studies
15 other study(ies) available for tanshinone-ii-a-sodium-sulfonate and Disease-Models--Animal
Article | Year |
---|---|
Sodium Tanshinone IIA Sulfonate Improves Adverse Ventricular Remodeling Post-MI by Reducing Myocardial Necrosis, Modulating Inflammation, and Promoting Angiogenesis.
Myocardial infarction (MI) leads to pathological cardiac remodeling and heart failure. Sodium tanshinone IIA sulfonate (STS) shows to possess therapeutic potential. The present study aimed to explore the potential role of STS in ventricular remodeling post-MI.. Mice were randomly divided into sham, MI + normal saline (NS) and MI + STS (20.8 mg/kg/day intraperitoneally) groups. MI was established following left anterior descending artery ligation. Cardiac function was evaluated using echocardiography. Scar size and myocardial fibrosis-associated markers were detected using Masson's trichrome staining and western blot analysis (WB). Necrosis and inflammation were assessed using H&E staining, lactate dehydrogenase (LDH) detection, ELISA, immunohistochemical staining, and WB. Furthermore, angiogenesis markers and associated proteins were detected using immunohistochemical staining and WB.. Mice treated with STS exhibited significant improvements in cardiac function, smaller scar size, and low expression levels of α-smooth muscle actin and collagen I and III at 28 days following surgery, compared with the NS-treated group. Moreover, treatment with STS reduced eosinophil necrosis, the infiltration of inflammatory cells, plasma levels of LDH, high mobility group protein B1, interleukin-1β and tumor necrosis factor- α, and protein expression of these cytokines at 3 days. Macrophage infiltration was also decreased in the STS group in the early phase. Additionally, CD31+ vascular density, protein levels of hypoxia-inducible factor- 1α, and vascular endothelial growth factor were elevated in the STS-treated mice at 28 days.. STS improved pathological remodeling post-MI, and the associated therapeutic effects may be a result of a decrease in myocardial necrosis, modulation of inflammation, and an increase in angiogenesis. Topics: Animals; Cicatrix; Disease Models, Animal; Humans; Inflammation; Mice; Myocardial Infarction; Myocardium; Neovascularization, Pathologic; Phenanthrenes; Vascular Endothelial Growth Factor A; Ventricular Remodeling | 2022 |
Sodium tanshinone IIA sulfonate improves cognitive impairment via regulating Aβ transportation in AD transgenic mouse model.
Alzheimer's disease (AD) is a most common neurodegenerative disease. Sodium Tanshinone IIA Sulfonate (STS) has been reported to ameliorate AD pathology. However, the underlying mechanism is still unclear. In this study, AD transgenic mouse model (APP/PS1) was used to explore the potential mechanism of STS against AD. Morris water maze and Y-maze tests showed that administration of STS improved learning and memory abilities of APP/PS1 mice. STS reduced the levels of reactive oxygen species and malondialdehyde, while improved the activity of superoxide dismutase in both hippocampus and cortex in APP/PS1 mice. STS inhibited the activity of acetylcholinesterase, while improved the activity of choline acetyltransferase in APP/PS1 mice. In addition, STS elevated the protein expressions of neurotrophic factors and synapse-related proteins in both the hippocampus and cortex in APP/PS1 mice. At last, STS improved the protein expressions of glucose transporter 1 (GLUT1) and low-density lipoprotein receptor-related protein 1 (LRP1). These results indicated that the potential mechanism of STS on AD might be related to Aβ transportation function via GLUT1/LRP1 pathway. HIGHLIGHTS: STS improves cognitive impairment of APP/PS1 mice. STS ameliorates the oxidative stress damage and improves the cholinergic system. STS protects against neuronal dysfunction and enhances the synaptic plasticity. STS mediates the Aβ transportation of BMECs. Topics: Acetylcholinesterase; Alzheimer Disease; Animals; Cognitive Dysfunction; Disease Models, Animal; Glucose Transporter Type 1; Mice; Mice, Transgenic; Neurodegenerative Diseases; Phenanthrenes | 2022 |
Prevention of endotoxin-induced cardiomyopathy using sodium tanshinone IIA sulfonate: Involvement of augmented autophagy and NLRP3 inflammasome suppression.
Increasing evidence indicates that patients or experimental animals exposure to endotoxin (lipopolysaccharides, LPS) exert deleterious cardiac functions that greatly contribute to morbidity and mortality. The pathophysiologic processes, including NLRP3 inflammasome overactivation and cardiac inflammatory injury, are complicated. Sodium tanshinone IIA sulfonate (STS), a water-soluble derivative of tanshinone IIA, is a naturally occurring compound extracted from Salvia miltiorrhiza and has anti-inflammatory and cardioprotective properties. In this study we examined the effect of STS on endotoxin-induced cardiomyopathy and investigated the underlying mechanisms. An endotoxemic mouse model was established by injecting LPS (10 mg/kg). Different doses of STS were administered intraperitoneally (5, 10, or 50 mg/kg) at different time points (2/12 h, 4/12 h, and 8/12 h) after LPS challenge to assess its effect on survival of mice with endotoxemia. In parallel, cardiac function, myocardial inflammatory cytokines, cardiomyocyte pyroptosis and autophagy were evaluated to determine the extent of myocardial damage due to sepsis in the presence and absence of STS at the optimal dose (10 mg/kg) and time-point (2/12 h). The results demonstrated that STS increased the survival rates, improved the compromised cardiac function and reduced myocardial inflammatory injury associated with enhanced autophagy and mitigated NLRP3 inflammasome activation. Moreover, inhibiting of autophagy or blocking the AMPK pathway reversed STS-elicited prevention of cardiomyopathy and activated the NLRP3 inflammasome in endotoxemic mice. Collectively, our study demonstrates that STS attenuates endotoxemia-induced mortality and cardiomyopathy, which may be associated with promotion of autophagy and inhibition of NLRP3 inflammasome overactivation. Topics: Animals; Autophagy; Cardiomyopathies; Disease Models, Animal; Echocardiography; Endotoxemia; Endotoxins; Heart Ventricles; Humans; Inflammasomes; Male; Mice; Myocytes, Cardiac; NLR Family, Pyrin Domain-Containing 3 Protein; Phenanthrenes; Pyroptosis | 2021 |
Sodium tanshinone IIA sulfonate protects against acute exacerbation of cigarette smoke-induced chronic obstructive pulmonary disease in mice.
Exacerbation of chronic obstructive pulmonary disease (COPD) is characterized by acute airway inflammation and mucus hypersecretion, which is by far the most costly aspect of its management. Thus, it is essential to develop therapeutics with low side effects for CODP exacerbation. Sodium tanshinone IIA sulfonate (STS) is a water-soluble derivative of tanshinone IIA isolated as the major active component of Chinese herbal medicine Danshen. Although it possesses anti-inflammatory, anti-oxidative and anti-apoptotic properties, it remains unknown whether STS protects against COPD exacerbation. In this study, we challenged cigarette smoke (CS)-exposed mice with lipopolysaccharide (LPS), and then treated these mice with STS. We found that STS significantly ameliorated pulmonary inflammatory responses, mucus hypersecretion and lung function decline in CS-exposed mice challenged with LPS. STS treatment also significantly attenuated increased IL-6 and IL-8 releases from cigarette smoke extract (CSE)-treated human bronchial epithelial cells (16HBE) challenged with LPS. Mechanistically, STS reduced activation of ERK1/2 and NF-κB in lungs of CS-exposed mice and CSE-treated 16HBE cells challenged with LPS. Taken together, STS protects against acute exacerbation of CS-induced lung injury, which provides a promising and potential therapeutic avenue to halt acute exacerbation of COPD. Topics: Acute Disease; Animals; Anti-Inflammatory Agents; Cell Line; Cigarette Smoking; Disease Models, Animal; Disease Progression; Drugs, Chinese Herbal; Humans; Lung; Male; Mice; Mice, Inbred C57BL; NF-kappa B; Phenanthrenes; Pulmonary Disease, Chronic Obstructive; Signal Transduction | 2020 |
Sodium Tanshinone IIA Sulfonate Protects Against Cerebral Ischemia-reperfusion Injury by Inhibiting Autophagy and Inflammation.
Sodium tanshinone IIA sulfonate (STS) can protect against brain damage induced by stroke. However, the neural protection mechanism of STS remains unclear. We investigated whether STS performs its protective function by suppressing autophagy and inflammatory activity during brain injury. We established a transient middle cerebral artery occlusion and reperfusion (MCAO/R) model by blocking the left middle cerebral artery with a thread inserted through the internal carotid artery for 1 h, followed by reperfusion for 48 h either with or without STS and the autophagy inhibitor 3-methyladenine (3-MA). Neuroprotective effects were determined by evaluating infarction, brain edema, and neurological deficits. The numbers of microglia-derived macrophages, monocyte-derived microglia, T cells, and B cells in the brains were measured, based on the surface marker analyses of CD45, CD11b, B220, CD3, and CD4 using fluorescence-assisted cell sorting. STS (10, 20, 40 mg/kg) was able to significantly reduce infarct volumes, improve neurological deficits, and reduce brain water contents. STS treatment reduced neuroinflammation, as assessed by the infiltration of macrophages and neutrophils, corresponding with reduced numbers of macrophages, T cells, and B cells in ischemia/reperfusion (I/R) brains. In addition, STS treatment also attenuated the upregulation of autophagy associated proteins, such as LC3-II, Beclin-1 and Sirt 6, which was induced by MCAO. These results demonstrated that STS can provide remarkable protection against ischemic stroke, possibly via the inhibition of autophagy and inflammatory activity. Topics: Animals; Autophagy; Brain Ischemia; Disease Models, Animal; Infarction, Middle Cerebral Artery; Inflammation; Neuroprotective Agents; Phenanthrenes; Rats; Rats, Sprague-Dawley; Reperfusion Injury | 2020 |
Sodium tanshinone IIA sulfonate attenuates silica-induced pulmonary fibrosis in rats via activation of the Nrf2 and thioredoxin system.
Silicosis is characterized by pulmonary fibrosis due to long-term inhalation of silica particles. Although the cause of this serious disease is known, its pathogenesis remains unclear and there are currently no specific treatments. Recent studies have shown that the anti-oxidant transcription factor Nrf2 is expressed at reduced levels in fibrotic foci, which may be related to disease progression. However, the molecular mechanisms by which this might occur have yet to be elucidated. Sodium tanshinone IIA sulfonate (STS), an extract of Salvia miltiorrhiza, is used in traditional Chinese medicine in the treatment of coronary heart disease. STS has been shown to play a strong anti-oxidative role in various organs. Here, we employed a rat model to explore the effects of STS on oxidative stress and the progression of fibrosis in silicosis. STS significantly reduced collagen deposition in the lungs, thereby antagonising silicosis. Immunohistochemical and immunofluorescence staining showed that Nrf2 was differentially expressed in lung cells during silica induced fibrosis, and chromatin immunoprecipitation-sequencing experiments demonstrated that Nrf2 promoted the expression of the antioxidant proteins thioredoxin and thioredoxin reductase. Our results suggest that the anti-fibrotic effects of STS may be related to upregulation of Nrf2 nuclear expression, especially in fibrotic lesions, and the promotion of thioredoxin and thioredoxin reductase expression. Our findings may open up new avenues for the development of STS as a treatment for silicosis. Topics: A549 Cells; Animals; Disease Models, Animal; Drugs, Chinese Herbal; Humans; Inhalation Exposure; Male; Mice; NF-E2-Related Factor 2; Particle Size; Phenanthrenes; Pulmonary Fibrosis; Rats; Rats, Wistar; RAW 264.7 Cells; Silicon Dioxide; Silicosis; Surface Properties; Thioredoxins | 2020 |
Sodium Tanshinone IIA sulfonate improves post-ischemic angiogenesis in hyperglycemia.
Diabetes is a strong risk factor of peripheral arterial disease (PAD), and also leads to impaired perfusion recovery in the ischemic limb, which eventually results in poor outcomes in PAD patients. Sodium Tanshinone IIA Sulfonate (STS), a monomer from herbs, has been shown to improve the outcomes in a variety of ischemic disease including myocardial infarction. However, the effects of STS treatment in PAD is not known.. Unilateral femoral artery was ligated in mice as experimental PAD models, STS treatment improved perfusion recovery, increased capillary densities, decreased reactive oxygen species (ROS) level and microRNA-133a (miR-133a) expression in the ischemic hindlimb in diabetic mice; however, STS did not change perfusion recovery in non-diabetic C57BL/6 mice. Ischemic muscle tissue from diabetic mice was harvested 7 days after femoral ligation for biochemical test, STS resulted in reduced malondialdehyde (MDA), and increased GTP cyclohydrolase 1 (GCH1) and cyclic guanine monophosphate (cGMP) levels. In addition, STS treatment increased miR-133a expression in endothelial cells isolated from ischemic muscle tissue of diabetic mice. In endothelial cells cultured in high glucose medium, STS increased tube formation and nitric oxide (NO) production, and reduced cellular ROS level and miR-133a expression under simulated ischemic condition. In addition, GCH1 inhibitor or miR-133a overexpression using exogenous microRNA mimic blunted STS-induced angiogenic effects and ROS neutralization in cultured endothelial cells under hyperglycemic and hypoxic conditions.. These findings demonstrate STS improves angiogenesis via inhibiting miR-133a expression and increasing GCH-1 protein levels in experimental PAD with diabetes. Topics: Animals; Diabetes Mellitus, Experimental; Disease Models, Animal; Drugs, Chinese Herbal; Hindlimb; Human Umbilical Vein Endothelial Cells; Humans; Hyperglycemia; Ischemia; Male; Mice; Mice, Inbred C57BL; MicroRNAs; Neovascularization, Physiologic; Peripheral Arterial Disease; Phenanthrenes; Phytotherapy; Reactive Oxygen Species; Salvia miltiorrhiza | 2019 |
Modulations of Keap1-Nrf2 signaling axis by TIIA ameliorated the oxidative stress-induced myocardial apoptosis.
Topics: Animals; Apoptosis; Cardiotonic Agents; Cells, Cultured; Disease Models, Animal; DNA Methylation; Epigenesis, Genetic; Heart Failure; Humans; Kelch-Like ECH-Associated Protein 1; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardium; NF-E2-Related Factor 2; Oxidative Stress; Phenanthrenes; Promoter Regions, Genetic | 2018 |
Sodium tanshinone IIA sulfonate improves inflammation, aortic endothelial cell apoptosis, disseminated intravascular coagulation and multiple organ damage in a rat heat stroke model.
The aim of the present study was to investigate the effects of sodium tanshinone IIA sulfonate (STS) on inflammatory responses, aortic endothelial cell apoptosis, disseminated intravascular coagulation (DIC) and multiple organ damage in an animal model of classic heat stroke (CHS). The rats in the heat stroke (HS) and STS‑treated heat stroke (STS‑HS) groups were placed into a pre‑warmed animal temperature controller (ATC) at 35˚C. The moment at which the rectal temperature reached 43.5˚C was considered as the time of onset of HS. In the HS groups, the rats were removed from the ATC and allowed to recover at 26˚C for 0, 2, 6 or 12 h. In the STS‑HS groups, the rats received femoral vein injections of 5‑40 mg/kg STS immediately following the onset of HS and were subsequently placed at a temperature of 26˚C to recover for 6 h. In the present study, the serum levels of tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β and IL‑6 were assessed using ELISA, and the numbers of apoptotic aortic endothelial cells were investigated using terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick‑end labeling combined with immunofluorescence. In the HS groups, the serum levels of TNF‑α, IL‑1β and IL‑6, as well as the numbers of apoptotic aortic endothelial cells were increased compared with the normothermic control group. Additionally, the plasma prothrombin time, activated partial thromboplastin time and D‑dimer level were significantly increased in the HS group compared with the normothermic control group following recovery for 6 h. By contrast, the platelet count was decreased in the HS group compared with the normothermic control group. The serum levels of creatinine, blood urea nitrogen, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and lactate dehydrogenase were increased and histopathological damage to multiple organs was observed in the HS group following recovery for 6 h. In the STS‑HS groups, cytokine levels and apoptotic aortic endothelial cell numbers were reduced compared with the HS group after 6 h recovery. STS (40 mg/kg) treatment additionally improved the serum levels of organ injury indicators and plasma indicators of coagulopathy, and prevented histopathological damage to multiple organs. These findings demonstrated that STS treatment may ameliorate multiple organ damage by attenuating inflammatory responses, aortic endothelial cell apoptosis and DIC in CHS. These results suggested that STS may hold potential a Topics: Animals; Apoptosis; Biomarkers; Cytokines; Disease Models, Animal; Disseminated Intravascular Coagulation; Endothelial Cells; Heat Stroke; Inflammation; Male; Phenanthrenes; Rats | 2017 |
Sodium tanshinone IIA sulfonate inhibits hypoxia-induced enhancement of SOCE in pulmonary arterial smooth muscle cells via the PKG-PPAR-γ signaling axis.
Our laboratory previously showed that sodium tanshinone IIA sulfonate (STS) inhibited store-operated Ca(2+) entry (SOCE) through store-operated Ca(2+) channels (SOCC) via downregulating the expression of transient receptor potential canonical proteins (TRPC), which contribute to the formation of SOCC (Wang J, Jiang Q, Wan L, Yang K, Zhang Y, Chen Y, Wang E, Lai N, Zhao L, Jiang H, Sun Y, Zhong N, Ran P, Lu W. Am J Respir Cell Mol Biol 48: 125-134, 2013). The detailed molecular mechanisms by which STS inhibits SOCE and downregulates TRPC, however, remain largely unknown. We have previously shown that, under hypoxic conditions, inhibition of protein kinase G (PKG) and peroxisome proliferator-activated receptor-γ (PPAR-γ) signaling axis results in the upregulation of TRPC (Wang J, Yang K, Xu L, Zhang Y, Lai N, Jiang H, Zhang Y, Zhong N, Ran P, Lu W. Am J Respir Cell Mol Biol 49: 231-240, 2013). This suggests that strategies targeting the restoration of this signaling pathway may be an effective treatment strategy for pulmonary hypertension. In this study, our results demonstrated that STS treatment can effectively prevent the hypoxia-mediated inhibition of the PKG-PPAR-γ signaling axis in rat distal pulmonary arterial smooth muscle cells (PASMCs) and distal pulmonary arteries. These effects of STS treatment were blocked by pharmacological inhibition or specific small interfering RNA knockdown of either PKG or PPAR-γ. Moreover, targeted PPAR-γ agonist markedly enhanced the beneficial effects of STS. These results comprehensively suggest that STS treatment can prevent hypoxia-mediated increases in intracellular calcium homeostasis and cell proliferation, by targeting and restoring the hypoxia-inhibited PKG-PPAR-γ signaling pathway in PASMCs. Topics: Animals; Calcium Signaling; Cell Proliferation; Cells, Cultured; Cyclic GMP-Dependent Protein Kinases; Disease Models, Animal; Dose-Response Relationship, Drug; Hypertension, Pulmonary; Hypoxia; Male; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Phenanthrenes; PPAR gamma; Protein Kinase Inhibitors; Pulmonary Artery; Rats, Sprague-Dawley; RNA Interference; Time Factors; Transfection; TRPC Cation Channels; Vascular Remodeling | 2016 |
Effect of sodium tanshinone IIA sulfonate treatment in a rat model of preeclampsia.
Preeclampsia is a disorder of pregnancy with a significant impact on maternal and fetal health. The complexity of this multifactorial condition has precluded development of effective therapies and, although many potential pathways have been investigated, the etiology still requires clarification. Our group has investigated the scavenger lectin-like oxidized LDL (LOX-1) receptor, which may respond to factors released from the distressed placenta that contribute to the vascular pathologies observed in preeclampsia. Given the known beneficial effects of sodium tanshinone IIA sulfonate (STS; a component of Salvia miltiorrhiza) on vasodilation, reduction of oxidative stress, and lipid profiles, we have investigated its role as a potential treatment strategy. We hypothesized that STS would improve vascular endothelial function and, combined with a reduction in oxidative stress, would improve pregnancy outcomes in a rat model of preeclampsia (reduced uteroplacental perfusion pressure, RUPP). We further hypothesized this may occur via the action of STS on the LOX-1 and/or platelet-activating factor (PAF) receptor axes. The RUPP model increased maternal blood pressure, vascular oxidative stress, and involvement of the vascular PAF receptor. Treatment with STS during pregnancy decreased both oxidative stress and involvement of the PAF receptor; however, it also increased involvement of the LOX-1 receptor, which is in line with the concept that scavenger receptors, such as LOX-1 and PAF, are upregulated in response to ligand binding and/or under pathological conditions. In this model of preeclampsia, however, the vascular actions of STS did not lead to improvements in pregnancy outcome such as fetal biometrics or maternal blood pressure. Topics: Animals; Blood Pressure; Disease Models, Animal; Endothelium, Vascular; Female; Lipoproteins, LDL; Oxidative Stress; Phenanthrenes; Placenta; Pre-Eclampsia; Pregnancy; Rats, Sprague-Dawley; Vasodilation | 2015 |
Sodium tanshinone IIA sulfonate ameliorates ischemia-induced myocardial inflammation and lipid accumulation in Beagle dogs through NLRP3 inflammasome.
The activation of NOD-like receptor (NLR) family, pyrin-domain containing 3 (NLRP3) inflammasome has now been proven to have a close connection with myocardial ischemia (MI) during acute phase, but the mechanisms are not completely clear. This study investigated the role of NLRP3 inflammasome in pathogenesis of MI injury including inflammation and lipid accumulation, as well as the effects of sodium tanshinone IIA sulfonate (STS) and diltiazem hydrochloride (DI).. Occlusion of left anterior descending (LAD) in canines was employed to induce MI. STS and DI were given intravenously 15 min after LAD occlusion. Cardiac function, inflammation and lipid levels, as well as related signaling pathways were determined.. MI induced in Beagle dog was characterized by elevated ST-segment and increased CK-MB level in serum. Cardiac NLRP3 inflammasome was activated with elevated myocardial IL-1β and IL-18 concentrations mediated by ROS over-production and TXNIP over-expression in MI dogs. Additionally, pro-inflammatory cytokines induced impairment of cardiac JAK2-STAT3 inflammatory pathway and insulin signaling pathway in this model, resulting in down-regulation of cardiac PPAR-α expression, subsequently causing lipid metabolism disorders characterized by elevation of myocardial lipid concentrations. These abnormalities were attenuated by the treatment of STS and DI.. These data firstly demonstrated that cardiac NLRP3 inflammasome activation driven by cardiac ROS over-production and TXNIP up-expression resulted in impairment of the JAK2-STAT3 and insulin signaling pathways, leading to disorder of lipid metabolism in myocardial ischemic dogs through PPAR-α over-expression. STS and DI might target cardiac NLRP3 inflammasome in preventing MI injury. Topics: Animals; Biomarkers; Carrier Proteins; Coronary Occlusion; Coronary Vessels; Creatine Kinase, MB Form; Disease Models, Animal; Dogs; Drugs, Chinese Herbal; Electrocardiography; Inflammasomes; Janus Kinase 2; Lipid Metabolism; Male; Myocardial Ischemia; Phenanthrenes; PPAR alpha; Reactive Oxygen Species; Signal Transduction; STAT3 Transcription Factor | 2015 |
Sodium tanshinone IIA sulfonate ameliorates experimental coronary no-reflow phenomenon through down-regulation of FGL2.
The effects of sodium tanshinone IIA sulfonate (STS) on coronary no-reflow (CNR) relevant to microvascular obstruction (MVO) remain unknown. Studies had shown that fibrinogen-like protein 2 (FGL2) expressed in microvascular endothelial cells (MECs) is a key mediator in MVO. Thus, we aimed to elucidate the roles of STS in CNR and relations between STS and FGL2.. Myocardial ischemia/reperfusion was selected to represent CNR model. The no-reflow zone and infarct area were assessed using Thioflavin S and TTC staining, and cardiac functional parameters were detected using echocardiography. Western blot was used to detected FGL2 level, fibrin level, protease-activated receptor-1 (PAR-1) activation and inflammation cells infiltration. FGL2 and inflammation cells were also identified by IHC. Microthrombus was detected by Carstairs' and MSB staining. We also detected the roles of STS on FGL2 expression, thrombin generation, phospho-Akt and NF-κB levels in MECs.. Upon treatment with STS in CNR model, the no-reflow and infarct areas decreased significantly and cardiac function improved. The FGL2 expression was inhibited by STS in vivo as well as in vitro with thrombin generation inhibition. In addition, STS up-regulates Akt phosphorylation and suppressed NF-κB expression in activated MECs. Furthermore, fibrin deposition, PAR-1 activation and inflammatory response were inhibited with STS administration in CNR model.. Our results displayed a novel pharmacological action of STS on CNR. STS is able to ameliorate CNR through inhibition of FGL2 expression mediated by Akt and NF-κB pathways as well as prevention of MVO by suppressing fibrin deposition and inflammation. Topics: Animals; Coronary Circulation; Disease Models, Animal; Down-Regulation; Endothelial Cells; Fibrin; Fibrinogen; Male; No-Reflow Phenomenon; Phenanthrenes; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Receptor, PAR-1; Reperfusion Injury; Signal Transduction | 2015 |
Regulation of antioxidant system, lipids and fatty acid β-oxidation contributes to the cardioprotective effect of sodium tanshinone IIA sulphonate in isoproterenol-induced myocardial infarction in rats.
Myocardial infarction (MI) is a cause of high morbidity and mortality in the world. Sodium tanshinone IIA sulphonate (STS) has been well used in Oriental medicine for treating cardiovascular diseases, however, the underlying mechanisms remain unclear. Alterations of circulating lipid profiles, increased fatty acid β-oxidation and oxidative stress play most important roles in the pathogenesis of MI. The present study aims to elucidate whether STS possesses cardioprotective effect against MI driven by isoproterenol (ISO), and to investigate its potential mechanisms of action.. MI was induced by subcutaneous injection of ISO (85 mg/kg at interval of 24 h for 2 consecutive days) to rats. The rats were randomly divided into 6 groups: (1) control; (2) ISO; (3) STS (16 mg/kg) +control; (4-6) STS (16, 8, 4 mg/kg) +ISO.. Our study showed that STS could ameliorate cardiac dysfunction and variation of myocardial zymogram, up-regulate antioxidant systems, and maintain the levels of circulating lipids driven by supramaximal doses ISO as well. Moreover, modulation of redox-sensitive extracellular signal-regulated kinase1/2 (ERK1/2)/Nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) and AMP-activated protein kinase (AMPK)/acetyl CoA carboxylase (ACC)/carnitine palmitoyltransferase (CPT) 1 pathways were involved in STS induced cardioprotection.. STS exerts strong favorable cardioprotective action. Additionally, the properties of STS, such as anti-dyslipidemia, anti-oxidant and inhibition of fatty acid β-oxidation, may be the mechanisms underlying the observed results. Topics: Animals; Antioxidants; Cardiotonic Agents; Disease Models, Animal; Fatty Acids; Gene Expression Regulation; Heart; Hemodynamics; Isoproterenol; Lipids; Male; Myocardial Infarction; Myocardium; Oxidation-Reduction; Oxygen; Phenanthrenes; Plant Extracts; Rats; Rats, Sprague-Dawley; Time Factors | 2013 |
Sodium tanshinone IIA sulfonate protects rat myocardium against ischemia-reperfusion injury via activation of PI3K/Akt/FOXO3A/Bim pathway.
To investigate the mechanisms underlying the protective effects of sodium tanshinone IIA sulfonate (STS) in an ischemia-reperfusion (I/R)-induced rat myocardial injury model.. Male SD rats were iv injected with STS, STS+LY294002 or saline (NS) for 15 d. Then the hearts were subjected to 30 min of global ischemia followed by 2 h of reperfusion. Cardiac function, infarction size and area at risk were assessed. Cell apoptosis was evaluated with TUNEL staining, DNA laddering and measuring caspase-3 activity. In addition, isolated cardiomyocytes of neonatal rats were pretreated with the above drugs, then exposed to H2O2 (200 mol/L) for 1 h. Cell apoptosis was detected using flow cytometric assay. The levels of p-Akt, p-FOXO3A and Bim were examined with immunoblotting.. Compared to NS group, administration of STS (20 mg/kg) significantly reduced myocardial infarct size (40.28%±5.36% in STS group vs 59.52%±7.28% in NS group), and improved the myocardial function as demonstrated by the increased values of dp/dtmax, LVDP and coronary flow at different reperfusion time stages. Furthermore, STS significantly decreased the rate of apoptotic cells (15.11%±3.71% in STS group vs 38.21%±7.83% in NS group), and reduced caspase-3 activity to nearly a quarter of that in NS group. Moreover, STS significantly increased the phosphorylation of Akt and its downstream target FOXO3A, and decreased the expression of pro-apoptotic gene Bim. Co-treatment with the PI3K inhibitor LY294002 (40 mg/kg) partially countered the protective effects induced by STS treatment. In isolated cardiomyocytes, STS exerted similar protective effects as shown in the ex vivo I/R model.. STS pretreatment reduces infarct size and improves cardiac function in an I/R-induced rat myocardial injury model via activation of Akt/FOXO3A/Bim-mediated signal pathway. Topics: Animals; Animals, Newborn; Apoptosis; Apoptosis Regulatory Proteins; Bcl-2-Like Protein 11; Cardiotonic Agents; Chromones; Disease Models, Animal; Flow Cytometry; Forkhead Box Protein O3; Forkhead Transcription Factors; Gene Expression Regulation; In Situ Nick-End Labeling; Male; Membrane Proteins; Morpholines; Myocardial Infarction; Myocardial Reperfusion Injury; Myocytes, Cardiac; Phenanthrenes; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Signal Transduction | 2013 |