tannins and Hypertension--Pulmonary

tannins has been researched along with Hypertension--Pulmonary* in 1 studies

Other Studies

1 other study(ies) available for tannins and Hypertension--Pulmonary

ArticleYear
Protective effects of the Terminalia bellirica tannin-induced Nrf2/HO-1 signaling pathway in rats with high-altitude pulmonary hypertension.
    BMC complementary medicine and therapies, 2023, May-06, Volume: 23, Issue:1

    Oxidative stress and endothelial cell dysfunction induced by high-altitude hypoxia have important roles in the pathological process of high-altitude pulmonary hypertension (HAPH). Tannins present in Terminalia bellirica (Gaertn.) Roxb. (TTR) have pharmacological activities that produce oxidation resistance and exert anti-inflammatory effects. Whether TTR exerts a protective effect on HAPH remains unknown.. A rat model of HAPH was established. The mean pulmonary arterial pressure (mPAP) of the animals was measured, the serum levels of SOD, MDA, and GSH-Px were measured using ELISA, and the expression of Bax, Bcl-2, Nrf2, and HO-1 proteins in the lung tissue of each group of rats was measured using Western blotting. Pathological changes in the lung tissue were also observed. A model of damage to H. The hemodynamic and pathologic findings showed that the mPAP of HAPH rats increased markedly, and the vascular wall thickness increased (P < 0.05). TTR reduced mPAP, alleviated or slowed pulmonary arterial remodeling, increased GSH-Px and SOD activity, lowered the level of MDA (P < 0.05), and downregulated the expression of Bax in the lung tissues of HAPH rats, while the expression of Bcl-2, Nrf2, and HO-1 was upregulated (P < 0.05). The results of the cell experiments showed that TTR inhibited H. The results suggest that TTR reduces pulmonary arterial pressure, decreases oxidative stress during HAPH, and exerts protective effects in rats with HAPH and that its mechanism of action is related to regulation of the Nrf2/HO-1 signaling pathway.

    Topics: Altitude; Altitude Sickness; Animals; bcl-2-Associated X Protein; Endothelial Cells; Hydrogen Peroxide; Hypertension, Pulmonary; NF-E2-Related Factor 2; Proto-Oncogene Proteins c-bcl-2; Rats; Reactive Oxygen Species; Signal Transduction; Superoxide Dismutase; Tannins; Terminalia

2023